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Module 1

Lecture 1

Stress
Stress is the internal resistance offered by the body to the external load applied to it
per unit cross sectional area. Stresses are normal to the plane to which they act and

are tensile or compressive in nature.
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As we know that in mechanics of deformable solids, externally applied forces acts on
a body and body suffers a deformation. From equilibrium point of view, this action
should be opposed or reacted by internal forces which are set up within the particles
of material due to cohesion. These internal forces give rise to a concept of stress.
Consider a rectangular rod subjected to axial pull P. Let us imagine that the same
rectangular bar is assumed to be cut into two halves at section XX. The each portion
of this rectangular bar is in equilibrium under the action of load P and the internal
forces acting at the section XX has been shown.

Now stress is defined as the force intensity or force per unit area. Here we use a

symbol ¢ to represent the stress.
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Where A is the area of the X —X section



Here we are using an assumption that the total force or total load carried by the
rectangular bar is uniformly distributed over its cross — section. But the stress
distributions may be for from uniform, with local regions of high stress known as
stress concentrations. If the force carried by a component is not uniformly distributed
over its cross — sectional area, A, we must consider a small area, ‘DA’ which carries

a small load ‘©P’, of the total force ‘P', Then definition of stress is

o= 2
&5,

As a particular stress generally holds true only at a point, therefore it is defined

mathematically as

Units :

The basic units of stress in S.1 units i.e. (International system) are N / m? (or Pa)

MPa = 10° Pa
GPa =10° Pa
KPa = 103 Pa

Sometimes N / mm? units are also used, because this is an equivalent to MPa. While

US customary unit is pound per square inch psi.

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2)
shear stress. Other stresses either are similar to these basic stresses or are a
combination of this e.g. bending stress is a combination tensile, compressive and
shear stresses. Torsional stress, as encountered in twisting of a shaft is a shearing
stress. Let us define the normal stresses and shear stresses in the following
sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are
normal to the areas concerned, then these are termed as normal stresses. The
normal stresses are generally denoted by a Greek letter (o)
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This is also known as uniaxial state of stress, because the stresses acts only in one
direction however, such a state rarely exists, therefore we have biaxial and triaxial
state of stresses where either the two mutually perpendicular normal stresses acts or
three mutually perpendicular normal stresses acts as shown in the figures below :
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(Triaxial state of stress)

Tensile or compressive Stresses:

The normal stresses can be either tensile or compressive whether the stresses acts
out of the area or into the area
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Bearing Stress: When one object presses against another, it is referred to a bearing
stress ( They are in fact the compressive stresses ).

Forces
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Bearing stresses at
the contact surface

Sian convections for Normal stress

Direct stresses or normal stresses
- tensile +ve

- compressive —ve

Shear Stresses:

Let us consider now the situation, where the cross — sectional area of a block of
material is subject to a distribution of forces which are parallel, rather than normal, to
the area concerned. Such forces are associated with a shearing of the material, and
are referred to as shear forces. The resulting stress is known as shear stress.

Forces acting parallel
to the area concerned

/ /




The resulting force intensities are known as shear stresses, the mean shear stress
being equal to
Fl

T:_

A,
Where P is the total force and A the area over which it acts. As we know that the

particular stress generally holds good only at a point therefore we can define shear
stress at a point as
&F

= lim —
En—D B4

The Greek symbol t (tau, suggesting tangential) is used to denote shear stress.

Complementary shear stresses:

The existence of shear stresses on any two sides of the element induces
complementary shear stresses on the other two sides of the element to maintain

equilibrium. As shown in the figure the shear stress t in sides AB and CD induces a

complimentary shear stress t  in sides AD and BC.
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Sign convections for shear stresses:

- tending to turn the element C.W +ve.

- tending to turn the element C.C.W — ve.

Deformation of a Body due to Self Weight

Consider a bar AB hanging freely under its own weight as shown in the figure.
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Let
L= length of the bar
A= cross-sectional area of the bar
E= Young’s modulus of the bar material
w= specific weight of the bar material
: . . WL
Then deformation due to the self-weight of the bar is dL= E

Members in Uni — axial state of stress
Introduction: [For members subjected to uniaxial state of stress]
For a prismatic bar loaded in tension by an axial force P, the elongation of the

bar can be determined as

PL

=— (1
AE I']

Suppose the bar is loaded at one or more intermediate positions, then equation
(1) can be readily adapted to handle this situation, i.e. we can determine the axial
force in each part of the bar i.e. parts AB, BC, CD, and calculate the elongation or
shortening of each part separately, finally, these changes in lengths can be added

algebraically to obtain the total charge in length of the entire bar.

11



o

When either the axial force or the cross — sectional area varies continuosly
along the axis of the bar, then equation (1) is no longer suitable. Instead, the
elongation can be found by considering a deferential element of a bar and then the

equation (1) becomes

yu)

d
A
d

=
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i.e. the axial force Pxand area of the cross — section Ax must be expressed as
functions of x. If the expressions for Pxand Ax are not too complicated, the integral
can be evaluated analytically, otherwise Numerical methods or techniques can be

used to evaluate these integrals.

Principle of Superposition

The principle of superposition states that when there are numbers of loads are acting
together on an elastic material, the resultant strain will be the sum of individual

strains caused by each load acting separately.
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Module 1
Lecture 2: Numerical Problems on stress, shear stress in axially loaded members.

Example 1: Now let us for example take a case when the bar tapers uniformly

fromdatx=0toD atx =1

x __—]

In order to compute the value of diameter of a bar at a chosen location let us
determine the value of dimension k, from similar triangles

(D - dj/2
|

Thusgk=

K
%

(D - d)x
21

therefore, the diameter 'y' at the X-section is

or=d+ 2k
(D - djx

:d+—

|
Hence the cross —section area at section X- X will be
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A, ora = =y

2
:f[d+(D—d)|E]

hence the total extension of the bar will be given by expression

I

=

Y

E;a
subsititutingthevalue of 'a'toget the
totalextentionof thebar

_mP i

= — 7
4E 7 [d+|:D—d]||E]

aftercarryingouttheint ergrationwe get

_ 4RI 1

) ﬁ[ﬁ E]

4P

- mEDd

hencethe totalstrainint he bar = 4.P.l
=xE D.d

An interesting problem is to determine the shape of a bar which would have a
uniform stress in it under the action of its own weight and a load P.

Example 2: stresses in Non — Uniform bars

Consider a bar of varying cross section subjected to a tensile force P as shown
below.

Let
a = cross sectional area of the bar at a chosen section XX
then

Stress< =p/a

14



If E = Young's modulus of bar then the strain at the section XX can be
calculated

<=</E

Then the extension of the short element < x. =<< .original length =< / E. <X

|
ar totalestension = E_[a}{
Epa

let us consider such a bar as shown in the figure below:

Area Ay’ L

The weight of the bar being supported under section XX is

15



x
= _[pgad}e:
i

where p isdensityof the bar.
thusthe stressat X is

x
F'+_[pgad}{
g=—10
a

x
oroa =P+ _[p.g.a dx
i
Differentiating the above equation with respect to x we get
0.0% = £.0.4
ot
g8 20 g
a g
int ergratingthe above equationwe get
IE = Jﬂd}{
a g

0.x
T
Inordertodet ermine theconstantof int egration

letusapply theboundaryconditions
at x=0a=g,

=

log,® = +constant

thus,constant = log,™
ar

log,® = + log, ™

a
log, [a_ =

j
Dr = —
2|

a

alsoat ==

g
dn

Thus,
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Example 1: Calculate the overall change in length of the tapered rod as shown in
figure below. It carries a tensile load of 10kN at the free end and at the step change
in section a compressive load of 2 MN/m evenly distributed around a circle of 30 mm
diameter take the value of E = 208 GN / m?.

This problem may be solved using the procedure as discussed earlier in this

section

Example 2: A round bar, of length L, tapers uniformly from radius r1 at one end to
radius rzat the other. Show that the extension produced by a tensile axial load P
_PL
is 27En’
If r2= 2r1, compare this extension with that of a uniform cylindrical bar having a
radius equal to the mean radius of the tapered bar.

Solution:

FEEELE




consider the above figure let r1 be the radius at the smaller end. Then at a X
crosssection XX located at a distance x from the smaller end, the value of radius is

equal to

X
L E(rz -n)

=101+ k)

wherek = [r2 N ]1—
L I

load
stressatsection sy = ——
area

Fl
a1+ ko)

hence strain atthis section = Sess

_ F
CEmi(l+ k)

FPdx
Emm(1+ k)
Totalextension of the bar can be found by integrating the above expression within
the limits from »=0 to »=L

F'dx
Em? {1+ ko)

Thusforasmall length dx of the bar at this section the extention is

L
Extension = _[
i

FI
E:m'1

_ P Josk ]
E.ﬂ'ﬁz -k o

_ P ke 1
Em*| -k -k

= P 1_ 1
Emfk| T+kL

) PL
Eam?(1+ kL)
{rz - 1)

2_[[1+kx %

since k =

nL
Thus, 1+kL = rz/
1

Therefore the extension = PL

Ffz
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Comparing of extensions
For the case when r2= 2.r, the value of computed extension as above
_PL
becomes equal to 274
The mean radius of taper bar
=1/2(r1+r2)
=1/2(r1+2r2)
=3/2.n
Therefore, the extension of uniform bar

= Orginal length . strain

hencethe

4FL
Exten sionof uniform _ | gnEam?
Extensionof tapered ) P
2nEr?

w | 00
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Module 1
Lecture 3:

Strain:

When a single force or a system force acts on a body, it undergoes some
deformation. This deformation per unit length is known as strain. Mathematically
strain may be defined as deformation per unit length.

So,

Strain=Elongation/Original length

Or, ¢ :6—|

Elasticity:

The property of material by virtue of which it returns to its original shape and size

upon removal of load is known as elasticity.
Hooks Law
It states that within elastic limit stress is proportional to strain. Mathematically

_ Stress
Strain

E

Where E = Young’'s Modulus
Hooks law holds good equally for tension and compression.

Poisson’s Ratio:

The ratio lateral strain to longitudinal strain produced by a single stress is known as

Poisson’s ratio. Symbol used for poisson’s ratio is por 1/m.

Modulus of Elasticity (or Young’s Modulus)

Young’s modulus is defined as the ratio of stress to strain within elastic limit.

Deformation of a body due to load acting on it

We know that young’s modulus E= Stress ,
Strain
Or, strain, & =2 =P_
E AE

20
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Now, strain, ¢ =8—

So, deformation

ESI:I:’_I

AE
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Module 1

Lecture 4: Numerical problems on Stress-strain relationship, Hooke’s law,

Poisson’s ratio, shear stress

22



Module 1

Lecture 5: Shear strain, modulus of rigidity, bulk modulus. Relationship between
material properties of isotropic materials.

Shear Strain

The distortion produced by shear stress on an element or rectangular block is shown
in the figure. The shear strain or ‘slide’ is expressed by angle ¢ and it can be defined
as the change in the right angle. It is measured in radians and is dimensionless in

U //

For elastic materials it is found that shear stress is proportional to the shear strain

nature.

Modulus of Rigidity

within elastic limit. The ratio is called modulus rigidity. It is denoted by the symbol ‘G’
or ‘C.

G= shear stress _ ©  N/mm?
shear strain ¢

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the

volumetric strain. It is denoted by the symbol K.

stress intensity o

K =
volumetric strain &y

Relation between elastic constants:

Elastic constants: These are the relations which determine the deformations
produced by a given stress system acting on a particular material. These factors are
constant within elastic limit, and known as modulus of elasticity E, modulus of rigidity

G, Bulk modulus K and Poisson’s ratio .

23



Relationship between modulus of elasticity (E) and bulk modulus (K):

E =3K(1-2p)

Relationship between modulus of elasticity (E) and modulus of rigidity (G):

E =2G(1+ )

Relation among three elastic constants:

9KG

G+3K

24



Module 1:
Lecture 6:

Numerical problems on, relation between elastic constants.

25



Module 1:

Lecture 7: Stress-strain diagram for uniaxial loading of ductile and brittle materials.

Stress — Strain Relationship
Stress — strain diagram for mild steel

Standard specimen are used for the tension test.

There are two types of standard specimen's which are generally used for this

purpose, which have been shown below:

This specimen utilizes a circular X-section.

[specimen with circular X-section)]

This specimen utilizes a rectangular X-section.

\\-\.\_\_\_‘_
Pam

[specimen with rectangular X-section]

lg = gauge length i.e. length of the specimen on which we want to determine the
mechanical properties.The uniaxial tension test is carried out on tensile testing

machine and the following steps are performed to conduct this test.

26



() The ends of the specimen are secured in the grips of the testing machine.

(i) There is a unit for applying a load to the specimen with a hydraulic or mechanical

drive.

(iif) There must be some recording device by which you should be able to measure
the final output in the form of Load or stress. So the testing machines are often
equipped with the pendulum type lever, pressure gauge and hydraulic capsule and

the stress Vs strain diagram is plotted which has the following shape.

A typical tensile test curve for the mild steel has been shown below

5}

~ PARTIALLY PLASTIC | /
Ultimate  |[ELASTIC I
stress - E

True siress-
strain diagram

Yield Py /
stress B/ C - : ,
A conventional stress-strain
, D diagram or nominal stress-
o ! strain diagram
& I
2 T I
= i
X rupture strength
: (it iz the stress at
i failure)
1
) | €
'l—v:_‘: sirain —=
Linear range

SALIENT POINTS OF THE GRAPH:

(A) So it is evident form the graph that the strain is proportional to strain or
elongation is proportional to the load giving a st.line relationship. This law of
proportionality is valid upto a point A.

or we can say that point A is some ultimate point when the linear nature of the graph
ceases or there is a deviation from the linear nature. This point is known as the limit
of proportionality or the proportionality limit.

(B) For a short period beyond the point A, the material may still be elastic in the
sense that the deformations are completely recovered when the load is removed.
The limiting point B is termed as Elastic Limit .

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not

totally recoverable. There will be thus permanent deformation or permanent set

27



when load is removed. These two points are termed as upper and lower yield points
respectively. The stress at the yield point is called the yield strength.

A study a stress — strain diagrams shows that the yield point is so near the
proportional limit that for most purpose the two may be taken as one. However, it is
much easier to locate the former. For material which do not posses a well define
yield points, In order to find the yield point or yield strength, an offset method is
applied.

In this method a line is drawn parallel to the straight line portion of initial stress
diagram by off setting this by an amount equal to 0.2% of the strain as shown as
below and this happens especially for the low carbon steel.

&
(8]

yield strength (or Proof stress)

r:r.fz % or .002 €
(E) A further increase in the load will cause marked deformation in the whole volume
of the metal. The maximum load which the specimen can with stand without failure is
called the load at the ultimate strength.
The highest point ‘E' of the diagram corresponds to the ultimate strength of a
material.
su = Stress which the specimen can with stand without failure & is known as Ultimate
Strength or Tensile Strength.
Su is equal to load at E divided by the original cross-sectional area of the bar.
(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum
until fracture occurs at F. Beyond point E, the cross-sectional area of the specimen
begins to reduce rapidly over a relatively small length of bar and the bar is said to
form a neck. This necking takes place whilst the load reduces, and fracture of the bar

finally occurs at point F.

28



Nominal stress — Strain OR Conventional Stress — Strain diagrams:
Stresses are usually computed on the basis of the original area of the specimen;

such stresses are often referred to as conventional or nominal stresses.

True stress — Strain Diagram:

Since when a material is subjected to a uniaxial load, some contraction or expansion
always takes place. Thus, dividing the applied force by the corresponding actual
area of the specimen at the same instant gives the so called true stress.

Percentage Elongation: 'd '

The ductility of a material in tension can be characterized by its elongation and by
the reduction in area at the cross section where fracture occurs.

It is the ratio of the extension in length of the specimen after fracture to its initial

gauge length, expressed in percentage.

-
5:(‘| ijmu
1

I = gauge length of specimen after fracture(or the distance between the gage marks
at fracture)

ly= gauge length before fracture(i.e. initial gauge length)

For 50 mm gage length, steel may here a % elongation d of the order of 10% to
40%.

Ductile and Brittle Materials:

Based on this behaviour, the materials may be classified as ductile or brittle

materials
Ductile Materials:

It we just examine the earlier tension curve one can notice that the extension of the
materials over the plastic range is considerably in excess of that associated with
elastic loading. The Capacity of materials to allow these large deformations or large
extensions without failure is termed as ductility. The materials with high ductility are

termed as ductile materials.

Brittle Materials:

29



A brittle material is one which exhibits a relatively small extensions or deformations

to fracture, so that the partially plastic region of the tensile test graph is much
reduced.

This type of graph is shown by the cast iron or steels with high carbon contents or
concrete.

30



Module 1:

Lecture 8: Introduction to mechanical properties of metals-hardness, impact

Mechanical Properties of material:

Elasticity: Property of material by virtue of which it can regain its shape after removal

of external load

Plasticity: Property of material by virtue of which, it will be in a state of permanent

deformation even after removal of external load.

Ductility: Property of material by virtue of which, the material can be drawn into

wires.

Hardness: Property of material by virtue of which the material will offer resistance to

penetration or indentation.

Ball indentation Tests:
iThis method consists in pressing a hardened steel ball under a constant load P
into a specially prepared flat surface on the test specimen as indicated in the figures

below :

L

]
r'/\ D\ . d .
: >

d
After removing the load an indentation remains on the surface of the test
specimen. If area of the spherical surface in the indentation is denoted as F sq. mm.
Brinell Hardness number is defined as :
BHN=P/F
F is expressed in terms of D and d
D = ball diameter

d = diametric of indentation and Brinell Hardness number is given by

BHN =

2P
7 D(D- v D? —d?)
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Then is there is also Vicker's Hardness Number in which the ball is of conical
shape.

IMPACT STRENGTH

Static tension tests of the unnotched specimen’'s do not always reveal the
susceptibility of metal to brittle fracture. This important factor is determined in impact
tests. In impact tests we use the notched specimen's

P

this specimen is placed on its supports on anvil so that blow of the striker is
opposite to the notch the impact strength is defined as the energy A, required to
rupture the specimen,

Impact Strength = A/ f

Where f = It is the cross — section area of the specimen in cm? at fracture &
obviously at notch.

The impact strength is a complex characteristic which takes into account both
toughness and strength of a material. The main purpose of notched — bar tests is to
study the simultaneous effect of stress concentration and high velocity load
application

Impact test are of the severest type and facilitate brittle friction. Impact strength
values can not be as yet be used for design calculations but these tests as rule
provided for in specifications for carbon & alloy steels.Futher, it may be noted that in
impact tests fracture may be either brittle or ductile. In the case of brittle fracture,
fracture occurs by separation and is not accompanied by noticeable plastic

deformation as occurs in the case of ductile fracture.

Impact loads:

Considering a weight falling from a height h, on to a collar attached at the end as

shown in the figure.

Let P= equivalent static or gradually applied load which will produce the same

extension x as that of the impact load W
Neglecting loss of energy due to impact, we can have:

Loss of potential energy= gain of strain energy of the bar
32



W(h+x):£Px
2

Now we have extension x = i
AE

Substituting the value of x in the above equation we have:

"h=ter

Wh+ )
AE 2 AE

Solving the above equation we can have the following relation:

P =W[1+ [+ 2hAE WWI]

Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W,

i.e. the stress produced by a suddenly applied load is twice that of the static stress.

Numerical examples:

1. Referring to the following figure let a mass of 100 kg fall 4cm on to a collar
attached to a bar of steel 2cm diameter, 3m long. Find the maximum stress set up.
Take E= 205,000 N/mm?,

Applying the relation:

P
O =

A
=W[L+ [+ 2hAE W17/ A

=}%2;|r1+\/1T2¥—ﬂ67ﬂ‘m@ﬁﬁﬁTﬁﬁﬁ—||
©981x3x1000
] J

=134 M/mm?
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Module 1:

Lecture 9: Composite Bars In Tension & Compression:-Temperature stresses in

composite rods statically indeterminate problem.

Thermal stresses, Bars subjected to tension and Compression

Compound bar: In certain application it is necessary to use a combination of
elements or bars made from different materials, each material performing a different
function. In over head electric cables or Transmission Lines for example it is often
convenient to carry the current in a set of copper wires surrounding steel wires. The
later being designed to support the weight of the cable over large spans. Such a
combination of materials is generally termed compound bars.

Consider therefore, a compound bar consisting of n members, each having a
different length and cross sectional area and each being of a different material. Let
all member have a common extension ‘X' i.e. the load is positioned to produce the
same extension in each member.

A e e

i Lt

/ n member
/ Length Ln

First member p Area An
Modulus En
Length L1 Load Fr
Area A1
Modulus E1 | | |
loadFy - - J-----------Q° Common
extension

Farthe'n' the members

FI'I
stress _ E - A
strain n }{n/ﬁ

Rl
An-¥n
ar Fn = En-'in-}""n = EnL"&n'n-}{ in

Where Fn is the force in the nth member and An and L are its cross - sectional
area and length.

Let W be the total load, the total load carried will be the sum of all loads for all
the members.
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E A x

W:E n''n
L,
= }{.E—E“'A“ ....... (2]
L,
Fraomequation (1), forceinmember!isgiven as
E - B, A x
framequation(2)
LY
}{ =
EEI'I"E\n
I_I'I
ThusF = Eify W
|‘1 E En'ﬂ\n
L,

Therefore, each member carries a portion of the total load W proportional of EA
/ L value.

L
SEA

The above expression may be writen as L

F, =

E, A
F1 - 4 1.W
if the length of each individual member in same then, we may write =~ ZEA

Thus, the stress in member '1' may be determined as <1 =Fi1/ A1

Determination of common extension of compound bars: In order to
determine the common extension of a compound bar it is convenient to consider it as
a single bar of an imaginary material with an equivalent or combined modulus Ec.

Assumption: Here it is necessary to assume that both the extension and
original lengths of the individual members of the compound bar are the same, the
strains in all members will than be equal.

Total load on compound bar = F1 + Fo+ Fs +......... + Fn

where F1, F 2 ,....,etc are the loads in members 1,2 etc

But force = stress . area,therefore

c(A1+A2+ ... +An)=0c1A1+ c2A2+ ........ + on An

Where o is the stress in the equivalent single bar
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Dividing throughout by the common strain<< .

i iJ i iJ
e Y N L E
E( 1 T nj = 1 = s E?["h

e E (A + A+ . +A )= EA +EA + E A
ar E. = Evi + By + B Ay
T At At A
- 2EA
A

with an external load W applied stressin the equivalent bar may be computed as

or E,

stress =ﬂ
A,

. . x Wy
1 th lent bar=—=————
strain inthe equivalent bar [ SAE

(=

WL
E.Z

hence commen extension x =

Compound bars subjected to Temp. Change : Ordinary materials expand
when heated and contract when cooled, hence , an increase in temperature produce
a positive thermal strain. Thermal strains usually are reversible in a sense that the
member returns to its original shape when the temperature return to its original
value. However, there here are some materials which do not behave in this manner.
These metals differs from ordinary materials in a sence that the strains are related
non linearly to temperature and some times are irreversible .when a material is
subjected to a change in temp. is a length will change by an amount.

g =ao.L.t

Orot =E.a .t

L e
o

[ﬁ"ﬂf/

o = coefficient of linear expansion for the material
L = original Length
t = temp. change

Thus an increase in temperature produces an increase in length and a
decrease in temperature results in a decrease in length except in very special cases
of materials with zero or negative coefficients of expansion which need not to be
considered here.

If however, the free expansion of the material is prevented by some external
force, then a stress is set up in the material. They stress is equal in magnitude to that
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which would be produced in the bar by initially allowing the bar to its free length and
then applying sufficient force to return the bar to its original length.

Change inLength=oa Lt
Therefore, strain=o Lt/ L
=ot

Therefore, the stress generated in the material by the application of sufficient
force to remove this strain

=strain x E
or Stress=E a t

Consider now a compound bar constructed from two different materials rigidly
joined together, for simplicity.

Let us consider that the materials in this case are steel and brass.

Steel

Brass

If we have both applied stresses and a temp. change, thermal strains may be
added to those given by generalized hook's law equation —e.g.
1
=, = E[c:r,,c -y +-:rz]|] + ouht
1
=, = E[r:ry— W, +-:rz]|] + oufit

1
=, = E[az -, + ﬂy]] + ouht

While the normal strains a body are affected by changes in temperatures, shear
strains are not. Because if the temp. of any block or element changes, then its size
changes not its shape therefore shear strains do not change.

In general, the coefficients of expansion of the two materials forming the

compound bar will be different so that as the temp. rises each material will attempt to
expand by different amounts. Figure below shows the positions to which the
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individual materials will expand if they are completely free to expand (i.e not joined
rigidly together as a compound bar). The extension of any Length L is given by o L t

Assurne O, > O,

(&) Criginal har Steel
Brass
3 Steel
A o Lot -
- L
[ O I
- o
3
Steel |B ¥

{b} Expanded position mambers
free 1o expand inrepenthy B Brass
Steel |

Extpnsionel T .
) Compression
shenl

of brass

i

[g) Expanded position of the Stee|
Compound har Brasa
3 Stes|

In general, changes in lengths due to thermal strains may be calculated form
equation &t = a Lt, provided that the members are able to expand or contract freely,

a situation that exists in statically determinates structures. As a consequence no
stresses are generated in a statically determinate structure when one or more
members undergo a uniform temperature change. If in a structure (or a compound
bar), the free expansion or contraction is not allowed then the member becomes s
statically indeterminate, which is just being discussed as an example of the
compound bar and thermal stresses would be generated.

If the two materials are now rigidly joined as a compound bar and subjected to
the same temp. rise, each materials will attempt to expand to its free length position
but each will be affected by the movement of the other. The higher coefficient of
expansion material (brass) will therefore, seek to pull the steel up to its free length
position and conversely, the lower coefficient of expansion martial (steel) will try to
hold the brass back. In practice a compromised is reached, the compound bar
extending to the position shown in fig (c), resulting in an effective compression of the
brass from its free length position and an effective extension of steel from its free
length position.
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Module 2:
Lecture 1-5:

Two Dimensional State of Stress and Strain: Principal stresses. Numerical

examples

Stresses on obligue plane: Till now we have dealt with either pure normal direct
stress or pure shear stress. In many instances, however both direct and shear
stresses acts and the resultant stress across any section will be neither normal nor
tangential to the plane. A plane stse of stress is a 2 dimensional stae of stress in a
sense that the stress components in one direction are all zero i.e
Gz=Tyz=Tx=0

Examples of plane state of stress include plates and shells. Consider the

general case of a bar under direct load F giving rise to a stress c y vertically

Thickness of the
element in z-dir is thin
\“‘»\ and is taken unity.

unit depth

Oy s G

The stress acting at a point is represented by the stresses acting on the faces of the
element enclosing the point. The stresses change with the inclination of the planes
passing through that point i.e. the stress on the faces of the element vary as the
angular position of the element changes. Let the block be of unit depth now
considering the equilibrium of forces on the triangle portion ABC. Resolving forces
perpendicular to BC, gives

oo .BC.1 = o ysind . AB.1

but AB/BC = sinO or AB = BC sin0

Substituting this value in the above equation, we get
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oo .BC.1 =06 ysin 0.BCsind .1or oo =cysin?20 (1)

Now resolving the forces parallel to BC
19 .BC.1 = o ycos 6. ABsin. 1

again AB = BC cos 0

ce .BC.1 = 6 ycos 6 .BC sin 6.1 or e =0 ySind coso
1
T = E-Gysin 20 (2)

If 6 = 90° the BC will be parallel to AB and 1= 0, i.e. there will be only direct stress
or normal stress.
By examining the equations (1) and (2), the following conclusions may be drawn

(i) The value of direct stress oo is maximum and is equal to ¢ y when v=90°.
(i) The shear stress 19 has a maximum value of 0.5 ¢ y when 0 = 450

Material subjected to pure shear:
Consider the element shown to which shear stresses have been applied to the

sides AB and DC

Complementary shear stresses of equal value but of opposite effect are then
set up on the sides AD and BC in order to prevent the rotation of the element. Since
the applied and complementary shear stresses are of equal value on the x and y
planes. Therefore, they are both represented by the symbol 1 .

Now consider the equilibrium of portion of PBC
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Assuming unit depth and resolving normal to PC or in the direction of oo
oo .PC.1 =14y .PB.cosO .1+t .BC.sSind .1
=Tyxy .PB.c0OSO + 14 .BC.Sin6

Now writing PB and BC in terms of PC so that it cancels out from the two sides
PB/PC = sind BC/PC = cosf
oo .PC.1 = 14y .c0SO sin® PC+tyy .cosO .sinb .PC

Go = 2Txy SiNO cosO
Or, c¢ =21y Sin20 (1)
Now resolving forces parallel to PC or in the direction of oo .then 1t PC.1
= Ty . PB sind -tx BC cos6b
-ve sign has been put because this component is in the same direction as that of o .
again converting the various quantities in terms of PC we have
T, PC.1=1,,.PB.sin? 0 1,,-1, PCcos?0
=-1,,[c0S?0 - sin?0 ]
= -Tyy C0S20 (2)
the negative sign means that the sense of 1 is opposite to that of assumed one. Let

us examine the equations (1) and (2) respectively
From equation (1) i.e,

Co = Txy Sinze
The equation (1) represents that the maximum value of cg is Txy when 0 = 45%Let us
take into consideration the equation (2) which states that
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Go = - Txy C0S20
It indicates that the maximum value of ce is twhen 6 = 0% or 90°. it has a value

zero when 0 = 45°,

From equation (1) it may be noticed that the normal component << has maximum
and minimum values of +< xy (tension) and << xy(compression) on plane at + 45° to
the applied shear and on these planes the tangential component << is zero.

Hence the system of pure shear stresses produces and equivalent direct stress
system, one set compressive and one tensile each located at 45° to the original

shear directions as depicted in the figure below:

l-ltg,'

Txy

Material subjected to two mutually perpendicular direct stresses:

Now consider a rectangular element of unit depth, subjected to a system of two

direct stresses both tensile, <x and <yacting right angles to each other.

iy .\
\ ' Jhﬁ“
A __H_J_nlt depth @}\ ] e
B A O
To
'5?: A L83}

[at] C

PrIE——
]

Ty
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for equilibrium of the portion ABC, resolving perpendicular to AC

co.AC.1 =0y sin0.AB.1+ cx cos6.BC.1

converting AB and BC in terms of AC so that AC cancels out from the sides
co = G Sin? O +c ,c0s?0

Futher, recalling that cos?0 - sin%0 = cos20 or (1 - cos20 )/2 = sin?0
Similarly (1 + cos20 )/2 = cos?q

Hence by these transformations the expression for << reduces to

=1/2<y (1 < cos2<) + 1/2<x (1 + cos2<)

On rearranging the various terms we get

Ty = [UIJFGY] +[ﬂ"E _GY]CDSEE
2 2
®3)

Now resolving parallal to AC

3)

Sq.AC.1= <<yy..c0S<.AB.1+<<y.BC.sin<.1

The — ve sign appears because this component is in the same direction as that
of AC.

Again converting the various quantities in terms of AC so that the AC cancels

out from the two sides.

Tq-ALT= [T costsing - o sinfeosf JAC
Ty =0, -0, )sinfcost
dy =0
100 g
a,-a
ar TE=|: 12 1’rjsinEE'
(4) (4)

Conclusions :

The following conclusions may be drawn from equation (3) and (4)

(i) The maximum direct stress would be equal to <x or <y which ever is the
greater, when < = 0° or 90°

(i) The maximum shear stress in the plane of the applied stresses occurs
when << = 450°

(o, -oy)
Tmax = 12 -
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Material subjected to combined direct and shear stresses:
Now consider a complex stress system shown below, acting on an element of

material.

The stresses < x and <y may be compressive or tensile and may be the result of
direct forces or as a result of bending.The shear stresses may be as shown or
completely reversed and occur as a result of either shear force or torsion as shown

in the figure below:

-~
=

P Tuy

Ty

D =—F»F—— C

y Oy

As per the double subscript notation the shear stress on the face BC should be
notified as <yx, however, we have already seen that for a pair of shear stresses
there is a set of complementary shear stresses generated such that <yx = <xy

By looking at this state of stress, it may be observed that this state of stress is
combination of two different cases:

(i) Material subjected to pure stae of stress shear. In this case the various
formulas deserved are as follows

<< = <yx Sin2<<

<< = <<< yx COS 2<<

(i) Material subjected to two mutually perpendicular direct stresses. In this case
the various formula’s derived are as follows.

_loy*ay) o
8 2

a,. -0
. _ 12 "

To get the required equations for the case under consideration,let us add the

x %) cos28
2

sin 28

respective equations for the above two cases such that
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a_ o+ a_-da
T, :li u "r:l+|: il 1’r:||::|:|52&'+ T, SIN28
2 2 ¥
_ Ii':r:-c _Gy) .
Ta —Tamﬂ?—trwcus?ﬂ

These are the equilibrium equations for stresses at a point. They do not depend
on material proportions and are equally valid for elastic and inelastic behaviour
This eqn gives two values of 2< that differ by 180° .Hence the planes on which

maximum and minimum normal stresses occurate 90%part.

, o do
Faraggto be a maximum or minimum d—; =0

Mo
o, +id J, -0
JE:[ "‘2 1*‘:I+|: "2 yjcus?ﬂﬁrwﬁiﬂzﬂ
% = - 2(0, - 0,)sin262 + 7,00 5202

=0
18- (o, - ¢ )sin2f+r cos282 =0

T L0528 = (o, - o, )sinZé

27
Thus, tan28 =
(UI - U\,r:'

From the triangle it may be determined

aJ.o -
cos2 = (9 - )
.J[crx -0,)? +dr,,
2T
sin28 = il

-\(l:'jx - ':rm,r:l2 + ‘Ihjxyr

2'[ Xy

Substituting the values of cos2<< and sin2<< in equation (5) we get
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(0, +0,) (0, -0y)

— X L3 H
T, = 3 + 5 cos2 + 1, sin2f
_ Ii':r:-c + U\,rj' (UI - ':ry.rjl (UI - ':ry:'
Og = + .
2 2 (o, -0, rait,
. '.rjw.Ztrmr
,‘!c:rch - UY]E +ﬂf:|2mr
- (UI + J\,r:' 1 |:.;r - ':ryjz
2 2 Jcr -t 412
L 412
2 ,J a,-a ]l +411
or

_loeroy) 1 (o o)t edr,
2 E.Jcr -, +£1'J2

- Y
__gwr 1\[0 Ty +411 1![c:r crj+411w
2! J[cr o) +ar,,
1 1
UB—EI:UI+U¥:I 2\('[0 —f.rj +fl'12
Hence we get the two values of UB,WhICh are designated o, as ¢, and respectively therefore

1 1
Ty = E(GI a0 5-1,((‘3'1 - c:ry]l2 “1’21-,;

1 1
0y = E[c:rch ta,)- i.\{[ax - nyjlz + AFW
The o, and o, are termed asthe principle stresses ofthe system.
Substituting the values of cos28 and sinZd in equation (B) we see that

Ty = %(a -0, )sindd -, cos2d
1 2Tg Tone LT = 0]
=§|:':rx_'jy:| il 2 i
Jlo, -0, v arty J(Ux—ﬂyj sart
T, =0

This shows that the values oshear stress is zero on the principal planes.

Hence the maximum and minimum values of normal stresses occur on planes

of zero shearing stress. The maximum and minimum normal stresses are called the

principal stresses, and the planes on which they act are called principal plane the

solution of equation

2Ty

ta nEEp =
[UI - ':ry:'
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will yield two values of 2< separated by 180° i.e. two values of < separated by
90° .Thus the two principal stresses occur on mutually perpendicular planes termed

principal planes.
Therefore the two — dimensional complex stress system can now be reduced to

the equivalent system of principal stresses.

Principle planes

-|-‘uI'E

-—

31 32

Y
Let us recall that for the case of a material subjected to direct stresses the

value of maximum shear stresses
T om S0, -0 et 8= 45" Thus, for a 2-dimensional state of stress subjected to principle stresses

(o, - @;), on substituting the valuesif o, and o, we get

2
T J(-:rx - ayj + ‘1’211;
Alternatively this expression can also be obtained by differentiating the expressian far 1, with respect to 8 ie.

T, =
Ta = %sirﬂﬂ— T L0 528

ddig = —%[ax ~0,)e05282 + 7, 5in28.2
=0
or (o, -0, Joos2f +2r, sin2d =1

|:U1,r - Crx:l [Ux - U\,r:l

tanZf, = = -

2T, 2Ty

Gy -0
‘tanzﬁlg = —M

21rmr

Recalling that

2T
tan2f, = — =

|:I:r:l: - I:r'!ll':I

Thus,

tan28; tan28_ = 1|
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Therefore,it can be concluded that the equation (2) is a negative reciprocal of
equation (1) hence the roots for the double angle of equation (2) are 90° away from
the corresponding angle of equation (1).

This means that the angles that angles that locate the plane of maximum or
minimum shearing stresses form angles of 45° with the planes of principal stresses.

Futher, by making the triangle we get

2T
cos2f = I;r
Jio,-a P edrt
-(g, -a
sin 24 = 9 ~ %)

Jlo, —o a4

Therefore by substtutingthevaluesof cos28and sin28we have

Ty = %[ax - o, )sin2d - 1 cosd

—_

T = a0y ) (o —ay) ) T2 Ty

2 Joy o rarty o, -0t edr,

- (ox- )

21:,1'\_..-

Because of root the difference in sign convention arises from the point of view
of locating the planes on which shear stress act. From physical point of view these
sign have no meaning.

The largest stress regard less of sign is always know as maximum shear
stress.

Principal plane inclination in terms of associated principal stress:

21
tan2f, = il

[gx - Uy:l

We know that the equation
yields two values of g i.e. the inclination of the two principal planes on which the
principal stresses si and sz act. It is uncertain,however, which stress acts on which

plane unless equation.
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(0, +0,) (o,-0,)

Te T 7

cos2f + 7, 5in28 . .
is used and observing which one of the

two principal stresses is obtained.
Alternatively we can also find the answer to this problem in the following

manner

| —unit depth

O or Op
{0‘1 az) c

Consider once again the equilibrium of a triangular block of material of unit
depth, Assuming AC to be a principal plane on which principal stresses < p acts, and
the shear stress is zero.

Resolving the forces horizontally we get:

<x.BC.1l+<x.AB.1l=<p.cos<.AC dividing the above equation through
by BC we get

Tt T

AR AC
EE crp.cusﬂ.—

BC
ar

0y + T tand = o
Thus

p

g -0
tang =%

Ty

49



GRAPHICAL SOLUTION — MOHR'S STRESS CIRCLE

The transformation equations for plane stress can be represented in a graphical
form known as Mohr's circle. This grapical representation is very useful in depending
the relationships between normal and shear stresses acting on any inclined plane at
a point in a stresses body.

To draw a Mohr's stress circle consider a complex stress system as shown in

the figure
A oy
Ty
_
A B
o P Ty
ful i
[a11
D =—1— C
y Oy

The above system represents a complete stress system for any condition of
applied load in two dimensions

The Mohr's stress circle is used to find out graphically the direct stress < and
sheer stress<< on any plane inclined at < to the plane on which < x acts.The
direction of < here is taken in anticlockwise direction from the BC.

STEPS:

In order to do achieve the desired objective we proceed in the following manner

() Label the Block ABCD.

(i) Set up axes for the direct stress (as abscissa) and shear stress (as
ordinate)

(iif) Plot the stresses on two adjacent faces e.g. AB and BC, using the following
sign convention.

Direct stresses<< tensile positive; compressive, negative

Shear stresses — tending to turn block clockwise, positive

— tending to turn block counter clockwise, negative

[ i.e shearing stresses are +ve when its movement about the centre of the

element is clockwise ]
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This gives two points on the graph which may than be labeled as AB and BC
respectively to denote stresses on these planes.

(iv) Join AB and BC

(v) The point P where this line cuts the s axis is than the centre of Mohr's

stress circle and the line joining AB and BC js diameter. Therefore the circle can now
be drawn.

Now every point on the circle then represents a state of stress on some plane
through C.

Proof:

a
=
=]

H
5

————————

(]
[y

~ | _lote)i2




Consider any point Q on the circumference of the circle, such that PQ makes
an angle 2<< with BC, and drop a perpendicular from Q to meet the s axis at N.Then
OQ represents the resultant stress on the plane an angle < to BC. Here we have
assumed that <x <<<y

Now let us find out the coordinates of point Q. These are ON and QN.

From the figure drawn earlier

ON =OP + PN
OP =OK + KP
OP =<y + 1/2 ( <x<<<y)
=<y [2+<y[/2+<x[2+<yl2
=(<x+<y) /2

PN = Rcos(2<<<<<)

hence ON = OP + PN

=(<x+<y)/2+Rcos(2<<<<<<)
= (<< x+<y)/2+ Rcos2< cos< + Rsin2< sin<

now make the substitutions for Rcos< and Rsin<.

g, -0
Reogd = |: 12 1’J; RsinE= Ty

Thus,

ON =1/2 (<<x+<y) + 1/2 (<<x < <y)C0S2< + <xySIiN2<< (1)

Similarly QM = Rsin(2<<<<< )

= Rsin2< cos< - Rcos2< sin<

Thus, substituting the values of R cos< and Rsin<, we get

QM =1/2 ( <x < <y)SiN2< <<< xy€0S2< (2)

If we examine the equation (1) and (2), we see that this is the same equation
which we have already derived analytically

Thus the co-ordinates of Q are the normal and shear stresses on the plane

inclined at < to BC in the original stress system.

N.B: Since angle BC PQ is 2< on Mohr's circle and not < it becomes obvious
that angles are doubled on Mohr's circle. This is the only difference, however, as
They are measured in the same direction and from the same plane in both figures.

Further points to be noted are :
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(1) The direct stress is maximum when Q is at M and at this point obviously the
sheer stress is zero, hence by definition OM is the length representing the maximum
principal stresses < 1 and 2< 1 gives the angle of the plane < 1 from BC. Similar OL is
the other principal stress and is represented by <2

(2) The maximum shear stress is given by the highest point on the circle and is
represented by the radius of the circle.

This follows that since shear stresses and complimentary sheer stresses have
the same value; therefore the centre of the circle will always lie on the s axis midway
between < x and <y . [ since +< xy & << xy are shear stress & complimentary shear
stress so they are same in magnitude but different in sign. ]

(3) From the above point the maximum sheer stress i.e. the Radius of the

Mohr's stress circle would be

(o, - g,
2

While the direct stress on the plane of maximum shear must be mid — may

between <x and <yi.e

(o, +a,)
2

/’

" BC
[ + LT',-}H&-\_\__J
2

(4) As already defined the principal planes are the planes on which the shear
components are zero.

Therefore are conclude that on principal plane the sheer stress is zero.

(5) Since the resultant of two stress at 90° can be found from the parallogram of
vectors as shown in the diagram.Thus, the resultant stress on the plane at q to BC is

given by OQ on Mohr's Circle.
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(6) The graphical method of solution for a complex stress problems using

Mohr's circle is a very powerful technique, since all the information relating to any

plane within the stressed element is contained in the single construction. It thus,

provides a convenient and rapid means of solution. Which is less prone to

arithmetical errors and is highly recommended.

Numericals:

Let us discuss few representative problems dealing with complex state of stress to

be solved either analytically or graphically.

Q 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is

the Value of shear stress on the planes on which the normal stress has a value of 50

MN/m? tensile.
Solution:
Tensile stress <y=F / A =105 x 103/ < x (0.02)?
= 83.55 MN/m?
Now the normal stress on an oblige plane is given by the relation
< <<<= <ySiN%<
50 x 10° = 83.55 MN/m? x 10°sin?<
< =50%8"'
The shear stress on the oblique plane is then given by
<<«<=1/2 <ysin2<
= 1/2 x 83.55 x 10%x sin 101.36
= 40.96 MN/m?
Therefore the required shear stress is 40.96 MN/m?
Q2:
For a given loading conditions the state of stress in the wall of a cylinder

expressed as follows:
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(a) 85 MN/m? tensile

(b) 25 MN/m? tensile at right angles to (a)

(c) Shear stresses of 60 MN/m? on the planes on which the stresses (a) and
(b) act; the sheer couple acting on planes carrying the 25 MN/m? stress is clockwise
in effect.

Calculate the principal stresses and the planes on which they act. What would
be the effect on these results if owing to a change of loading (a) becomes
compressive while stresses (b) and (c) remain unchanged

Solution:

The problem may be attempted both analytically as well as graphically. Let us

first obtain the analytical solution

A
25 MK

me
S E— B0 MM

85 MN

A J
The principle stresses are given by the formula

@y anda,

SIPRTS t%J{ax gt ar,,
1
2
=65 +

(BE5+25) + %Jr;as + 280 + (4360

1.EEI~.|"§ =RE +B7

ra|

= g, =122 MN/m*

gy = =12 MM/ {compre ssive)

For finding out the planes on which the principle stresses act us the

27
tan2f = [ il ]
equation Tx "%y

The solution of this equation  will yeild two values < i.e
they <1 and <2 giving <1= 31°71' & <2=121°71"
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(b) In this case only the loading (a) is changed i.e. its direction had been
changed. While the other stresses remains unchanged hence now the block diagram

becomes.
A
25 MM

m=
- " 60 MM

m.2

85 MN
me

Y

Again the principal stresses would be given by the equation.

1 1
0y by = 5(01 + cryjl 15\":“: - GY:IZ +4’2w

(-85 +25)+ %J{-BE - 287 + (43604

R —= B —

(-60) + %J{—as - 258 +(4x60%)

= =30 i%q‘ﬂﬂ]ﬂ +14400

=-30zx814

gy =514 MM/t oy = -111.4 MN/m?

Again for finding out the angles use the following equation.
27

tanEE:[ i ]

T, =0y

_ 2x60 _ 120
85-25  -110
_ 12
EE

12
28 =tan| -—
[ 11]

= f=-2374"

Thus, the two principle stresses acting on the two mutually perpendicular
planes i.e principle planes may be depicted on the element as shown below:
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A Ref.plane

|
o B.C ™w
¥ 1
——a= Ty I
B B |
A Tuy 02 !
% i
% 1
\\ _ ﬂ' |
3 — |
"‘-\{.—. e
N
5
5
- C

Y

So this is the direction of one principle plane & the principle stresses acting on
this would be < 1 when is acting normal to this plane, now the direction of other
principal plane would be 90° + < because the principal planes are the two mutually
perpendicular plane, hence rotate the another plane < + 90° in the same direction to
get the another plane, now complete the material element if < is negative that means

we are measuring the angles in the opposite direction to the reference plane BC .

Therefore the direction of other principal planes would be {<< + 90} since the
angle << is always less in magnitude then 90 hence the quantity (<<< + 90 ) would
be positive therefore the Inclination of other plane with reference plane would be

positive therefore if just complete the Block. It would appear as

Ref.plane
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If we just want to measure the angles from the reference plane, than rotate this
block through 180° so as to have the following appearance.

I
]
a2,

ge‘ ¥ !

So whenever one of the angles comes negative to get the positive value,

first Add 90° to the value and again add 90° as in this case < = <2374

s0 <1=<23%74' + 90°= 66°26' .Again adding 90° also gives the direction of
other principle planes

i.e <2=66%26"'+ 90°=156°26'

This is how we can show the angular position of these planes clearly.
GRAPHICAL SOLUTION:

Mohr's Circle solution: The same solution can be obtained using the

graphical solution i.e the Mohr's stress circle,for the first part, the block diagram

becomes
+ 25 MN
m: 60 MN
m?
A B
*\ 60 MN
\‘ m:.

A
%

Construct the graphical construction as per the steps given earlier.
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Y

Taking the measurements from the Mohr's stress circle, the various quantities
computed are

<1 =120 MN/m? tensile

<2 =10 MN/m? compressive

<1 = 34%counter clockwise from BC

<2 =349+ 90 = 124° counter clockwise from BC

Part Second : The required configuration i.e the block diagram for this case is

shown along with the stress circle.

By taking the measurements, the various quantites computed are given as
<1 =56.5 MN/m? tensile
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<2 =106 MN/m? compressive

<1=66°15' counter clockwise from BC

<2 =156°15"' counter clockwise from BC

Salient points of Mohr's stress circle:
complementary shear stresses (on planes 90° apart on the circle) are equal in
magnitude
. The principal planes are orthogonal: points L and M are 180° apart on the circle
(90° apart in material)
There are no shear stresses on principal planes: point L and M lie on normal
stress axis.
. The planes of maximum shear are 45° from the principal points D and E are 90°,
measured round the circle from points L and M.
. The maximum shear stresses are equal in magnitude and given by points D and
E
. The normal stresses on the planes of maximum shear stress are equal i.e. points
D and E both have normal stress co-ordinate which is equal to the two

principal stresses.

5

—

[

As we know that the circle represents all possible states of normal and shear

stress on any plane through a stresses point in a material. Further we have seen that

the co-ordinates of the point ‘Q' are seen to be the same as those derived from
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equilibrium of the element. i.e. the normal and shear stress components on any
plane passing through the point can be found using Mohr's circle. Worthy of note:
1. The sides AB and BC of the element ABCD, which are 90° apart, are represented

on the circle by #B P and BC P and they are 180° apart.

2. It has been shown that Mohr's circle represents all possible states at a point.
Thus, it can be seen at a point. Thus, it, can be seen that two planes LP and PM,
180° apart on the diagram and therefore 90° apart in the material, on which shear
stress < < is zero. These planes are termed as principal planes and normal stresses
acting on them are known as principal stresses.

Thus, <1=0L

<2=0M
3. The maximum shear stress in an element is given by the top and bottom points of
the circle i.e by points J1 and J2 ,Thus the maximum shear stress would be equal to
the radius of i.e. < max= 1/2(<< 1<<< 2 ),the corresponding normal stress is obviously
the distance OP = 1/2 (<< x+ <y ), Further it can also be seen that the planes on
which the shear stress is maximum are situated 90° from the principal planes ( on
circle ), and 45° in the material.

4. The minimum normal stress is just as important as the maximum. The
algebraic minimum stress could have a magnitude greater than that of the maximum
principal stress if the state of stress were such that the centre of the circle is to the
left of orgin.

i.e.if <1=20 MN/m? (say)

<2 = <80 MN/m? (say)

Then <max™ = (<1<<<2/2) =50 MN/m?

If should be noted that the principal stresses are considered a maximum or
minimum mathematically e.g. a compressive or negative stress is less than a
positive stress, irrespective or numerical value.

5. Since the stresses on perpendular faces of any element are given by the co-
ordinates of two diametrically opposite points on the circle, thus, the sum of the two
normal stresses for any and all orientations of the element is constant, i.e. Thus sum

is an invariant for any particular state of stress.
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Sum of the two normal stress components acting on mutually perpendicular
planes at a point in a state of plane stress is not affected by the orientation of these

planes.

N

) —f——

This can be also understand from the circle Since AB and BC are diametrically
opposite thus, what ever may be their orientation, they will always lie on the diametre

or we can say that their sum won't change, it can also be seen from analytical

relations
We know a, = (©, ; %) + (o ; g"rjc0526+ T SN 28
on plane BC; < =0
<n1 = <x
on plane AB; < = 27Q°
<p2 =<y

Thus <n1+ <n2= <xt+ <y

6. If <1= <2, the Mohr's stress circle degenerates into a point and no shearing
stresses are developed on xy plane.

7. If <x+ <y=0, then the center of Mohr's circle coincides with the origin

of <<<<< co-ordinates.
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Module 2

Lecture 6-7: Thin cylinder and thin spherical shells under internal pressure and
numerical examples. Wire winding of thin cylinders. Numerical examples.

Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the
cylindrical and hemispherical portion is different. While the internal diameter of both

the portions is assumed to be equal

Let the cylindrical vassal is subjected to an internal pressure p.

L
NS
_.{K:-.Lllﬂ 3

¢I-F-..

H—

For the Cylindrical Portion

haop ar circumferential stress = 't'here synifies the cylindrical portion.
_ bd
)
longitudnal stress= o -
_ pd
o
hoop or circumferential strain g, = % - v%= %[E—rx]

d
ar &, :;:?[2-1-']

For The Hemispherical Ends:
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Because of the symmetry of the sphere the stresses set up owing to internal
pressure will be two mutually perpendicular hoops or circumferential stresses of
equal values. Again the radial stresses are neglected in comparison to the hoop
stresses as with this cylinder having thickness to diametre less thanl:20.

Consider the equilibrium of the half — sphere

Force on half-sphere owing to internal pressure = pressure x projected Area

=p. <d%4
Resistingfarce=a, . mdt,
nd*
——=ay,.mdt
P ) H 2

= oy (for spherej=ﬂ

ts

. T _a _ pd _ pd
similatly the hoop stram—E[crH —y.cr,,]——[1 —u]——[1— y] ar |e, ——[1— u]

Fig — shown the (by way of dotted lines) the tendency, for the cylindrical portion and
the spherical ends to expand by a different amount under the action of internal
pressure. So owing to difference in stress, the two portions (i.e. cylindrical and
spherical ends) expand by a different amount. This incompatibly of deformations
causes a local bending and sheering stresses in the neighborhood of the joint. Since
there must be physical continuity between the ends and the cylindrical portion, for
this reason, properly curved ends must be used for pressure vessels.

Thus equating the two strains in order that there shall be no distortion of the junction

%[2 - ] =%[1 -] nr%=%
But for general steel works v = 0.3, therefore, the thickness ratios becomes
t2/t1=0.7/1.7 or

t, = 2.4t,

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the
hemispheroid ends for no distortion of the junction to occur.
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SUMMARY OF THE RESULTS : Let us summarise the derived results

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p
are :

(i) Circumferential or loop stress

o H = pd/2t

(i) Longitudinal or axial stress

c L = pd/at

Where d is the internal diametre and t is the wall thickness of the cylinder.
then

Longitudinal strain e L=1/E [c -V o H]

Hoopstain en=1/E[ocH=- Vo L]

(B) Change of internal volume of cylinder under pressure

Thin rotating ring or cvlinder

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal
pressure p caused by the centrifugal effect of its own mass when rotating. The
centrifugal effect on a unit length of the circumference is

p=muw?r

Fig 19.1: Thin ring rotating with constant angular velocity <
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Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal
effect if its own mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure,
2F = p x 2r (assuming unit length), as 2r is the projected area
F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed
constant across the wall thickness.

F = mass x acceleration = m w?2r x r

This tension is transmitted through the complete circumference and therefore is
resisted by the complete cross — sectional area.

hoop stress = F/A=m w?r?/ A
Where A is the cross — sectional area of the ring.

Now with unit length assumed m/A is the mass of the material per unit volume, i.e.
the density < .

hoop stress ¢, = p w? r?
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Module 2

Lecture 8-10' Torsion of solid circular shafts
Torsion of circular shafts

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T =
F.d applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion.

N ral
v,

F

Y Ei T=F.d
d
s

Effects of Torsion: The effects of a torsional load applied to a bar are
(i) To impart an angular displacement of one end cross — section with respect to the other end.

(i) To setup shear stresses on any cross section of the bar perpendicular to its axis.

Assumption:

(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material.
(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain.
(iii) The stress does not exceed the elastic limit.
(iv) The circular section remains circular
(v) Cross section remain plane.
(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.
Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end being fixed
Under the action of this torque a radial line at the free end of the shaft twists through an angle 6 , point A moves
to B, and AB subtends an angle ‘ y ' at the fixed end. This is then the angle of distortion of the shaft i.e the shear
strain.
Since angle in radius = arc / Radius
arc AB=R6
=L y[since L and y also constitute the arc AB]
Thus,y=Re/L (1)

From the definition of Modulus of rigidity or Modulus of elasticity in shear
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_ shearstress(1)
shear strain(y)
where ¥ isthe shear stress set up atradius R

T
Then — =
G ¥

L
G

Equating the equations (1) and () we get R—LE =
%= ? = l]where T'isthe shear stress at any radius r.
r

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stressYr'.

The force set up on each element

= stress x area

=1' x 2n r dr (approximately)

This force will produce a moment or torque about the center axis of the shaft.
=t .2mnrdr.r

=2mnt.r2dr

F
T= _[Em'r dr
The total torque T on the section, will be the sum of all the contributions. o

Since t'is a function of r, because it varies with radius so writing downYt' in terms of r from the equation (1).
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. Gl
e Ti=

R
wegetT = _[E?IE.rSdr
3 L

:bﬁﬂﬂ

o
_2m8 [R]
L 4],

2mR*

T v dr

~|2 -2 -2 g

%

now substituting B = d/2

 p—
o]
SIS
—

—
Sinlz:eﬁ = Jthepolarmomentofinertia

T G8
Drj—T ...... |:2:|

if we combine the equation no. (1) and (2] we get

Where
T = applied external Torque, which is constant over Length L;
J = Polar moment of Inertia

4
=™ 0y solid shaft
32

_ ;'T|:D4 _ d4:|

=5 for a hollow shaft.

[ D = Outside diameter ; d = inside diameter ]
G = Modules of rigidity (or Modulus of elasticity in shear)
0 = It is the angle of twist in radians on a length L.
Tensional Stiffness: The tensional stiffness k is defined as the torque per radius twist
ie,k=T/6=GJ/L
Power Transmitted by a shaft : If T is the applied Torque and w is the angular velocity of the shaft, then the
power transmitted by the shaft is
2mNT  ZmMNT
BTN T
whera [=rpm

TORSION OF HOLLOW SHAFTS:

P=Tuws=

From the torsion of solid shafts of circular x — section , it is seen that only the

material at the outer surface of the shaft can be stressed to the limit assigned as an
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allowable working stresses. All of the material within the shaft will work at a lower
stress and is not being used to full capacity. Thus, in these cases where the weight
reduction is important, it is advantageous to use hollow shafts. In discussing the
torsion of hollow shafts the same assumptions will be made as in the case of a solid
shaft. The general torsion equation as we have applied in the case of torsion of solid

shaft will hold good

T_71_G#
I
Farthe hollow shaft
4 _ a4
J= % where Dy=0utside diameter
d=Inside diameter
1
Let dizi'DD
_ 16T
Tmax |5-:|Iid g m
. | _ TDhp /2
™ byl m 4 4
— . -
=0t -4
- 16T Dy
D, [1 - (d, /D, )“]
_ 16T - =1.065. 1E'I:3 2
D, l1—|;1 12) I Dy

Hence by examining the equation (1) and (2) it may be seen that the t max™ in the
case of hollow shaft is 6.6% larger than in the case of a solid shaft having the same
outside diameter.

Reduction in weight:

Considering a solid and hollow shafts of the same length 'I' and density ' p ' with di =

1/2 Do

1/2 Do
= S—
| /4_\
| ) A Esa}u )
|
- Da = = Da =
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Weight of hollow shaft
2 I
:I:Han _;I?]:D[I'Ifzjl ll}{,ﬂ

a

PR
_ Dy’

= I:::I?I::ID2 _ HDD2‘||}{P

[1-174]1xp

2
=75 0 E

;
YWeight of solid shaft =ﬂ?1':' 1.p

al 2z
Reduction inweight = ({1-0.75) 4'3 lxp

7D ,?
|
7

=025

Hence the reduction in weight would be just 25%.

lllustrative Examples :

Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally
applied torque. To at the shoulder as shown in the figure. Determine the angle of

rotation 0o of the shoulder section where To is applied ?
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Module 3
Lecture 1- 4: Shear Force and Bending Moment

Concept of Shear Force and Bending moment in beams:
When the beam is loaded in some arbitrarily manner, the internal forces and
moments are developed and the terms shear force and bending moments come into

pictures which are helpful to analyze the beams further. Let us define these terms

ror

T FAA7T

B

-

- 3= T

[
o

-————

| S
T

e

e

2
b N

Fig 1
Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1,
P2, Pz and is simply supported at two points creating the reactions Ri1 and
R2 respectively. Now let us assume that the beam is to divided into or imagined to be
cut into two portions at a section AA. Now let us assume that the resultant of loads
and reactions to the left of AA is ‘F' vertically upwards, and since the entire beam is
to remain in equilibrium, thus the resultant of forces to the right of AA must also be F,
acting downwards. This forces ‘F' is as a shear force. The shearing force at any x-
section of a beam represents the tendency for the portion of the beam to one side of
the section to slide or shear laterally relative to the other portion.
Therefore, now we are in a position to define the shear force ‘F' to as follows:
At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral
components of the forces acting on either side of the x-section.

Sign Convention for Shear Force:
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The usual sign conventions to be followed for the shear forces have been illustrated
in figures 2 and 3.

F

The resultant force which is in the downward
direction and is towards the R.H.5 of the
X-section is +ve Shear Force.

The resultant force which is in upward
direction and is towards the L.H.S of the

A
I
I
I
I
I
I
I
|
I
|
I
|
I
I
I
I
I
I
I
I
I
X-seclion is +ve Shear Force I
I
A

Fig 2: Positive Shear Force

F

The resultant force which are in the dowmward
direction and is on the L.H.5 of the X-section
is -we Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: ¥-seclion Is -ve Shear Force,
A

Fig 3: Negative Shear Force
Bending Moment:
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P1 Pz Pa

[
e Fifes
A A
Ri 1a) Rz
P4 Pz A Pz
I
I
r'.-1;f | 'hM
i i : \
: ' !
F=7 : !
T LN | P
_— | -
A | A
|
Ri : Ra
b} A
Fig 4

Let us again consider the beam which is simply supported at the two prints, carrying
loads P1, P2 and P3 and having the reactions Ri1 and Rz at the supports Fig 4. Now,
let us imagine that the beam is cut into two potions at the x-section AA. In a similar
manner, as done for the case of shear force, if we say that the resultant moment
about the section AA of all the loads and reactions to the left of the x-section at AA is
M in C.W direction, then moment of forces to the right of x-section AA must be ‘M' in
C.C.W. Then ‘M' is called as the Bending moment and is abbreviated as B.M. Now

one can define the bending moment to be simply as the algebraic sum of the

moments about an x-section of all the forces acting on either side of the section

Sign Conventions for the Bending Moment:
For the bending moment, following sign conventions may be adopted as indicated in
Fig 5 and Fig 6.
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M./ \l'u'l

/

Resultant moment on the R.H.5 postion
of the X-section is C.C.W, then it may be
considered as positive B.M

\

A
1
|
|
|
|
I
I
I
I
I
I
|
|
|
|
|
|
Resultant moment on the LH.8 of |
the X-section is C.W, then itis a |
positive B.M I
|
|

A

Fig 5: Positive Bending Moment

Resultant moment on the R.H.5 of
the X-section is C.W, then itis a
negative B.M

Resultant moment on the L.H.S of
the X-section is C.C.W, then itis a
negative B.M

:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
A
Fig 6: Negative Bending Moment
Some times, the terms ‘Sagging' and Hogging are generally used for the positive and
negative bending moments respectively.
Bending Moment and Shear Force Diagrams:
The diagrams which illustrate the variations in B.M and S.F values along the length
of the beam for any fixed loading conditions would be helpful to analyze the beam
further.
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear
force ‘F' varies along the length of beam. If x dentotes the length of the beam, then F
is function x i.e. F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the
internal bending moment ‘M' varies along the length of the beam. Again M is a
function x i.e. M(x).

Basic Relationship Between The Rate of Loading, Shear Force and Bending
Moment:

The construction of the shear force diagram and bending moment diagrams is
greatly simplified if the relationship among load, shear force and bending moment is
established.

Let us consider a simply supported beam AB carrying a uniformly distributed load
w/length. Let us imagine to cut a short slice of length dx cut out from this loaded

beam at distance X' from the origin ‘0".

\ Z

- ‘K\ ,,;i..

X
RHX __\—p Considered to

he detached

[m]
RN
¥

Let us detach this portion of the beam and draw its free body diagram.

The forces acting on the free body diagram of the detached portion of this loaded
beam are the following
* The shearing force F and F+ &F at the section x and x + dx respectively.

* The bending moment at the sections x and x + dx be M and M + dM respectively.
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* Force due to external loading, if ‘w' is the mean rate of loading per unit length then
the total loading on this slice of length dx is w. dx, which is approximately acting
through the centre ‘c'. If the loading is assumed to be uniformly distributed then it
would pass exactly through the centre ‘c'.

This small element must be in equilibrium under the action of these forces and
couples.

Now let us take the moments at the point ‘c'. Such that

M+F.%H+(F +6Fj.%}{=M+EM

= F O rary 2= o
2 2

;\rF.az_}{+Fg_}{+6F.az—}{= &M [Meglecting the product of

&F and &x being smallquantities|
= F 5w = &M
G

=F=—
G

Under the limits x— 0

:% e

Fesaolvingthe farcesvertically we get
w.dx+(F +8F)1=F

F

= W= —E
baFy
Under the limits fx—0
== W= —ﬁﬂ —i(ﬂj
dx dx "du
dF oM
W—_H—_F (2:]

Conclusions: From the above relations,the following important conclusions may be
drawn

* From Equation (1), the area of the shear force diagram between any two points,
from the basic calculus is the bending moment diagram

ff = J'F.dx

* The slope of bending moment diagram is the shear force, thus

_ dM

F=""
dx

Thus, if F=0; the slope of the bending moment diagram is zero and the bending

moment is therefore constant.'
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d

— =0
+ The maximum or minimum Bending moment occurs where 49
The slope of the shear force diagram is equal to the magnitude of the intensity of the
distributed loading at any position along the beam. The —-ve sign is as a

consequence of our particular choice of sign conventions

Procedure for drawing shear force and bending moment diagram:

Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a
beam as a function of ‘x' measured from one end of the beam is that it becomes
easier to determine the maximum absolute value of shear force and bending
moment.

Further, the determination of value of M as a function of ‘x' becomes of paramount
importance so as to determine the value of deflection of beam subjected to a given
loading.

Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In
order to draw this, first the reactions must be determined always. Then the vertical
components of forces and reactions are successively summed from the left end of
the beam to preserve the mathematical sign conventions adopted. The shear at a
section is simply equal to the sum of all the vertical forces to the left of the section.
When the successive summation process is used, the shear force diagram should
end up with the previously calculated shear (reaction at right end of the beam. No
shear force acts through the beam just beyond the last vertical force or reaction. If
the shear force diagram closes in this fashion, then it gives an important check on
mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the
length of beam from the left hand end and summing up the areas of shear force
diagrams giving due regard to sign. The process of obtaining the moment diagram
from the shear force diagram by summation is exactly the same as that for drawing

shear force diagram from load diagram.
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It may also be observed that a constant shear force produces a uniform change in
the bending moment, resulting in straight line in the moment diagram. If no shear
force exists along a certain portion of a beam, then it indicates that there is no
change in moment takes place. It may also further observe that dm/dx= F therefore,
from the fundamental theorem of calculus the maximum or minimum moment occurs
where the shear is zero. In order to check the validity of the bending moment
diagram, the terminal conditions for the moment must be satisfied. If the end is free
or pinned, the computed sum must be equal to zero. If the end is built in, the moment
computed by the summation must be equal to the one calculated initially for the
reaction. These conditions must always be satisfied.

lllustrative problems:

In the following sections some illustrative problems have been discussed so as to
illustrate the procedure for drawing the shear force and bending moment diagrams

1. A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W
(for all values of x) -ve sign means the shear force to the left of the x-section are in
downward direction and therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in
the anticlockwise direction and is therefore taken as —ve according to the sign
convention)

so that the maximum bending moment occurs at the fixed end i.e. M =-W |

From equilibrium consideration, the fixing moment applied at the fixed end is WI and

the reaction is W. the shear force and bending moment are shown as,
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W ¥ 1X

LA / 5F I:liagram

% Wi —B8. M. Diagram

2. Simply supported beam subjected to a central load (i.e. load acting at the mid-

way)

- bt ). £
R —— —

By symmetry the reactions at the two supports would be W/2 and W/2. now consider
any section X-X from the left end then, the beam is under the action of following

forces.

w

RhA

.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]
If we consider another section Y-Y which is beyond I/2 then
WY =Y
S Fpy = —-W=—
T 2 for all values greater = 1/2

Hence S.F diagram can be plotted as,
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W, // 7

=\

5.F.Diagram

B

.For B.M diagram:
If we just take the moments to the left of the cross-section,

B.hd = sforxliesbetween0 and 52

ileBMatx =0

ra| —

Again

:ﬂ}{—w}{+ﬂ
2

W W |

= - Mt —

2 2

W W

Bl TS +?

Which when plotted will give a straight relation i.e.

Il‘ll

5F

W
BM Yy 4

81



It may be observed that at the point of application of load there is an abrupt change
in the shear force, at this point the B.M is maximum.

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

LS ]

w | length
1 i

| b
I

+ Wiy %

Here the cantilever beam is subjected to a uniformly distributed load whose intensity
is given w / length.
Consider any cross-section XX which is at a distance of x from the free end. If we

just take the resultant of all the forces on the left of the X-section, then

S.Fxx = -Wx for all values of ‘X' -------—---- (1)
SFx=0
S.Fxxatx=1=-WI

So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated
load of the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

BMyy = - W x %

2
= -yl
= Wiy 5
The above equation is a quadratic in X, when B.M is plotted against x this will
produces a parabolic variation.

The extreme values of this would be at x =0 and x =

Wyl
B.Mgyy ==~ 5

Hence S.F and B.M diagram can be plotted as follows:

82



w | length

B.M -2

4. Simply supported beam subjected to a uniformly distributed load [U.D.L].

I"/|Ellg[|'l
s [
Wi Wl
"(g . : J, /2

The total load carried by the span would be

= intensity of loading x length

=w x|

By symmetry the reactions at the end supports are each wl/2

If x is the distance of the section considered from the left hand end of the beam.
S.F at any X-section X-X is

ZE—W}{

N

Giving a straight relation, having a slope equal to the rate of loading or intensity of
the loading.
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W

S'Fa‘t:-:=l:|=? = Wy
soat
S'Fat | =0 hencethe S Fiszeroatthe centre
X= =
I
Wl
S-Fatx=|:'T

The bending moment at the section x is found by treating the distributed load as

acting at its centre of gravity, which at a distance of x/2 from the section

¥

".l'ln / [
2

X

W X

B.h = —uw - Wu—
WX 5 L H 5

sothe

¥

=W§|:I —2:| 2]

B.h,, - =0
B.M,, -, =0

Wiy |2
BMlge- =-—

So the equation (2) when plotted against x gives rise to a parabolic curve and the
shear force and bending moment can be drawn in the following way will appear as

follows:

Idl\ll/liangth

W |/2 Wl ,_3

Wl e
N \% I/za.F.Dnagmm
-_—

Wi /8

B.M Dingr.al'rl
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Module 3
Lecture 5-8: Pure Bending

Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a
beam may consists of a resultant normal force, a resultant shear force and a
resultant couple. In order to ensure that the bending effects alone are investigated,
we shall put a constraint on the loading such that the resultant normal and the
resultant shear forces are zero on any cross-section perpendicular to the longitudinal
axis of the member,

That means F =0

dhd _
since dx or M = constant.

Thus, the zero shear force means that the bending moment is constant or the
bending is same at every cross-section of the beam. Such a situation may be
visualized or envisaged when the beam or some portion of the beam, as been
loaded only by pure couples at its ends. It must be recalled that the couples are

assumed to be loaded in the plane of symmetry.

-=——Heam

Plane of Symmetry

Fig (1)

Fig (2}
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When a member is loaded in such a fashion it is said to be in pure bending. The
examples of pure bending have been indicated in EX 1land EX 2 as shown below :

EX .2 P P

zero 5.F

s FD

Constant B.M

BM.D

EFD

BMD

When a beam is subjected to pure bending are loaded by the couples at the ends,
certain cross-section gets deformed and we shall have to make out the conclusion
that,

1. Plane sections originally perpendicular to longitudinal axis of the beam remain
plane and perpendicular to the longitudinal axis even after bending , i.e. the cross-
section A'E', B'F' ( refer Fig 1(a) ) do not get warped or curved.

2. In the deformed section, the planes of this cross-section have a common
intersection i.e. any time originally parallel to the longitudinal axis of the beam

becomes an arc of circle.
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Any Transverss

Section
1 A ’/
1
| ,/
jl_ ______
/II N_A = Neutral axis
s 1
Meutral g
Surface ] A
£ Nf___.-

We know that when a beam is under bending the fibres at the top will be lengthened
while at the bottom will be shortened provided the bending moment M acts at the
ends. In between these there are some fibres which remain unchanged in length that
is they are not strained, that is they do not carry any stress. The plane containing
such fibres is called neutral surface.

The line of intersection between the neutral surface and the transverse exploratory
section is called the neutral axisNeutral axis (N A) .

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let
us consider the two cross-sections of a beamHE and GF , originally parallel as
shown in fig 1(a).when the beam is to bend it is assumed that these sections remain
parallel i.e.H'E' and G'F' , the final position of the sections, are still straight lines,
they then subtend some angle <.

Consider now fiber AB in the material, at adistance y from the N.A, when the beam
bends this will stretch to A'B'

Therefore,
change inlength

strain infibre AB = -
orginallength

_AB - AB

A5 ButAB = CDandCD =C'D

refertafigl{a) andfigl(b)
A8 -CD
cD
Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the

C.ostrain =

neutral axis zero. Therefore, there won't be any strain on the neutral axis
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(R+y)B-RB _RB+yA-RA _y
RA Ra R
However sttregs =E whereE=Young'sModulusof elasticity
strain

Therefore eguating the twostrains as

obtained fromthe tworelationsi.e,

E
=%Dri=_ .............. )
y R

ml =

P

AN

Consider any arbitrary a cross-section of beam, as shown above now the strain on a

fibre at a distance ‘y' from the N.A, is given by the expression

U:E
g

if the shaded strip isof area'dA
thenthe force onthe stripis

F=odh=Cy 6
R

Wament about the neutral axiswould he =F .y =g ylEA

The toatl moment for the whole
cross-section istherefore equal to

N —
M =32 _ y° A= — G4,
ERF REF

¥3 . . .
Now the termZ¥ & s the property of the material and is called as a second moment

of area of the cross-section and is denoted by a symbol I.

Therefore
E
M==I ..
- @
cambining equation 1 and 2 we get
o _M_E
y 1T R

This equation is known as the Bending Theory Equation.The above proof has

involved the assumption of pure bending without any shear force being present.
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Therefore this termed as the pure bending equation. This equation gives distribution
of stresses which are normal to cross-section i.e. in x-direction.

Section Modulus:

From simple bending theory equation, the maximum stress obtained in any cross-

section is given as

a m -
max

M
T ¥

max

For any given allowable stress the maximum moment which can be accepted by a
particular shape of cross-section is therefore

For ready comparison of the strength of various beam cross-section this relationship
is some times written in the form
I

M=Za o where =
max

Yma |s termed as section modulus
The higher value of Z for a particular cross-section, the higher the bending moment
which it can withstand for a given maximum stress.

Theorems to determine second moment of area: There are two theorems which

are helpful to determine the value of second moment of area, which is required to be
used while solving the simple bending theory equation.

Second Moment of Area:

Taking an analogy from the mass moment of inertia, the second moment of area is
defined as the summation of areas times the distance squared from a fixed axis.
(This property arised while we were driving bending theory equation). This is also
known as the moment of inertia. An alternative name given to this is second moment

of area, because the first moment being the sum of areas times their distance from a

. . . . 2
given axis and the second moment being the square of the distance or [ da .

89



Consider any cross-section having small element of area d A then by the definition
. . 2 .
l(Mass Moment of Inertia about x-axis) = J ¥* 94 and I,(Mass Moment of Inertia

about y-axis) =] ¥ dA
Now the moment of inertia about an axis through ‘O' and perpendicular to the plane
of figure is called the polar moment of inertia. (The polar moment of inertia is also the
area moment of inertia).
ie,

J = polar moment of inertia

= [1aa
= [0+ 4Py
= [itda+]ytda

ly +1y
ord=1l. +l . (1

The relation (1) is known as the_perpendicular axis theorem and may be stated as
follows:

The sum of the Moment of Inertia about any two axes in the plane is equal to the
moment of inertia about an axis perpendicular to the plane, the three axes being
concurrent, i.e, the three axes exist together.

CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the

following manner
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I

(A

"

)
]

Consider any circular strip of thickness < r located at a radius 'r'.

Than the area of the circular strip would be dA = 2<r. <r

J=[raa
Taking the limits of intergration from O to d/2
d

7
J= Jrzzmﬂr
i

d
all FI v
-2
however by perpendicular axistheorem
J= e+ 1y
But far the circular cross-section the lxand lyare both
equal being moment of inertia about a diameter

1

lgig = §J
_—
lgg = —
G4

forahollow circular sectionof diameterDand d,
thevaluesof Jandlare definedas

_#pt - &
1= 32
n(D“ - d“)
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Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a
parallel axis through the centroid plus the area times the square of the distance

between the axes.

F I i i ) z
If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the
centroid G, of the cross-section, then
I, = I(g,r +hj2 dA by definition (moment of inertia about an axis £7)
= [ +2yh +n7)aa

= [y%da +n? [da +2n ] yaa

Since | ydA= 0
= [yt +n? [da
= [ytda +nia
l, = I, +Ah? |, =l (since cross-section axes also pass through G)

YWhere & =Total area of the section

Rectangular Section:
For a rectangular x-section of the beam, the second moment of area may be

computed as below :
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N

dy

Consider the rectangular beam cross-section as shown above and an element of
area dA , thickness dy , breadth B located at a distance y from the neutral axis,
which by symmetry passes through the centre of section. The second moment of

area | as defined earlier would be

ha=[y'da
Thus, for the rectangular section the second moment of area about the neutral axis

i.e., an axis through the centre is given by

|N.A

I
[ ol

—

[Zx]
—

m

e
e
=

1
m ol
| o—rl o
=
[+
o
—

|
l'_A_'I||:|:|
| 2

I
——
D:||':l
L)
e —
—

Blo® C°
= _|— 4+ —
A E g
. - BD?
H.A 12
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Similarly, the second moment of area of the rectangular section about an axis
through the lower edge of the section would be found using the same procedure but

with integral limits of 0 to D .

u]
| =8 Iﬂl :E
Therefore 3 3

These standards formulas prove very convenient in the determination of Ina for build
up sections which can be conveniently divided into rectangles. For instance if we just
want to find out the Moment of Inertia of an | - section, then we can use the above

relation.

'

ML A

Y

M. A_ of dotted rectangle ofzhaded portion

B i
CONAT T 12

_ BD® bd?

lN.A - W =
Use of Flexure Formula:
lllustrative Problems:
An | - section girder, 200mm wide by 300 mm depth flange and web of thickness is
20 mm is used as simply supported beam for a span of 7 m. The girder carries a
distributed load of 5 KN /m and a concentrated load of 20 KN at mid-span.
Determine the

(). The second moment of area of the cross-section of the girder
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(if). The maximum stress set up.

Solution:

The second moment of area of the cross-section can be determained as follows :

For sections with symmetry about the neutral axis, use can be made of standard |
value for a rectangle about an axis through centroid i.e. (bd 3 )/12. The section can
thus be divided into convenient rectangles for each of which the neutral axis passes

through the centroid. Example in the case enclosing the girder by a rectangle

|girder: | - |

_ IEEIIII xanu3l 0 o Ian xzau3l p—

rectangle =zhaded portion

12 12
= (45-264 N0
=1.86=10"* m*

[
The maximumstressmaybefoundfrom 300 mm

the simplebendingtheorybyequation N

3

A
280 mm

| I-I'Ilmax’“

Computation of Bending Moment:

In this case the loading of the beam is of two types
(a) Uniformly distributed load

(b) Concentrated Load

In order to obtain the maximum bending moment the technique will be to consider
each loading on the beam separately and get the bending moment due to it as if no

other forces acting on the structure and then superimpose the two results.
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l':lb 3.8m 5 i:I}
n " “ SRNIm * I *
oo |
P VAN FiAY f B
W2 W2

SFN SFD\‘ SFO

[ this should be the

combined shear force

diagram for the above w2

nading) B %“

2
r""I1m33-c""' =WTL+%
_20=10° =7 N E=10% =77
4 g
= (35.0 +30.63)10°
=G5 63 kNm

Hence

m
—  max
m | I-I'Ilmax""

:55.53x103x150x103
10E=10%
o =518MNm?
ax

m

max

Shearing Stresses in Beams
All the theory which has been discussed earlier, while we discussed the bending

stresses in beams was for the case of pure bending i.e. constant bending moment

acts along the entire length of the beam.
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Module 3
Lecture 9- 12: Deflection of Beams

Deflection of Beams

Introduction:

In all practical engineering applications, when we use the different components,
normally we have to operate them within the certain limits i.e. the constraints are
placed on the performance and behavior of the components. For instance we say
that the particular component is supposed to operate within this value of stress and
the deflection of the component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe
condition but there may be the deflection which is the more rigid condition under
operation. It is obvious therefore to study the methods by which we can predict the
deflection of members under lateral loads or transverse loads, since it is this form of
loading which will generally produce the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a
differential equation of elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid
only for beams that are not stressed beyond the elastic limit.

2. The curvature is always small.

3. Any deflection resulting from the shear deformation of the material or shear
stresses is neglected.

It can be shown that the deflections due to shear deformations are usually small and
hence can be ignored.

L

s/
P

Y
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Consider a beam AB which is initially straight and horizontal when unloaded. If under
the action of loads the beam deflect to a position A'B' under load or infact we say
that the axis of the beam bends to a shape A'B'. It is customary to call A'B' the
curved axis of the beam as the elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the
bending moment M varies along the length of the beam and we represent the
variation of bending moment in B.M diagram. Futher, it is assumed that the simple

bending theory equation holds good.

¥

a_ M _E
T R

If we look at the elastic line or the deflection curve, this is obvious that the curvature
at every point is different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take
two axes x and y, x-axis coincide with the original straight axis of the beam and the y
— axis shows the deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this
element let us construct the normal which intersect at point O denoting the angle
between these two normal be di

But for the deflected shape of the beam the slope i at any point C is defined,

tani:d—Elr N I T i=d—3'r Assuming tani =i
X dx
Futher
ds=Rdi
hiow ey ar,
ds = dx [usually for sall curvature]
Hence
ds = dx = Rdi
dx R

substitutingthevalueofi, one get
d[dy]=1 rdzy 1

Sla) R R
Fromthe simplebendingtheary
M E El
— = _orM==—
TTRTTR
sothe basic differentialequation governingthe deflectionof beamsis
dz'_-,-'
h=El
di®
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This is the differential equation of the elastic line for a beam subjected to bending in
the plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the
deflection curve as it is frequently called.

Relationship between shear force, bending moment and deflection: The
relationship among shear force,bending moment and deflection of the beam may be
obtained as

Differentiating the equation as derived

did_, d¥y M
_=EI_3_ Recalling —=F
dx d x d dx

Thus,
Ay

&

F=El

Therefore, the above expression represents the shear force whereas rate of intensity

of loading can also be found out by differentiating the expression for shear force

LB w= - dF
' dx
|:|43,f
w= -El
dx¥

Therefore if'y'isthe deflection of the loadedbeam,
thenthefollowingimportantrelationscanbearrivedat

dy
[ =1
slope w
dzj,r
B.M=EI
dx?
-
Shear force = EIW

|:|43,f
d?

loaddistribution = El

Methods for finding the deflection: The deflection of the loaded beam can be
obtained various methods.The one of the method for finding the deflection of the
beam is the direct integration method, i.e. the method using the differential equation
which we have derived.

Direct integration method: The governing differential equation is defined as
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iy Mo_ diy
M = El ==
gt = sl

onintegrating one get,
d_f'f: _[Ed}{ +A.--- - thisequation gives the slape
dx El
of theloadedbeam.

Integrate once again to get the deflectian.

3-’?”%::1}{ + &% +B

Where A and B are constants of integration to be evaluated from the known
conditions of slope and deflections for the particular value of x.

lllustrative examples : let us consider few illustrative examples to have a familiarty
with the direct integration method

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is

subjected to a concentrated load W at the free end, it is required to determine the
deflection of the beam

W | X
|

L J

L

In order to solve this problem, consider any X-section X-X located at a distance x
from the left end or the reference, and write down the expressions for the shear force

abd the bending moment
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S.F|M_ch = -y

Ei.h-'1|3lc_ch = =Wy
Therefore M| = -W.x
7
the gwerningequatiun% = %
substituting the value of W interms of x then integrating the equation one get
M _ d'y
El i
dy _ W
df  H
fy Wy
R — __d
dei / B
dy _ Wl
L =- + A
dx 2El

Integrating ance mare,

dy _W}{z
Iﬁ—f ﬁdxt[ﬁkdx

3
¥ =—W_H+AK+EE
GEI

The constants A and B are required to be found out by utilizing the boundary
conditions as defined below

leatx=L;y=0 (1)

atx=L;dy/dx=0 (2)

Utilizing the second condition, the value of constant A is obtained as
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Wi

JE]
While employing the first condition yields
Wwi®
Y= —ﬁ+AL +B
g WL
GEI
_wil ol
EEl Z2El
Oyl -awl 2wl
T BEIl BE
WL
T oIEE

substituting the values of A and Bwe get
y= el WL _WEI
EIl GEI  2EI  3EI
The slope as well asthe deflection wauld be
maximum atthe free end hence putting »=0 we get,

_ ol
Yomax =~ =El

2
—, e
[Slnpe]maxrn _+E

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever

beam is subjected to U.d.| with rate of intensity varying w / length.The same

procedure can also be adopted in this case
X
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M o_ diy
Bl dwf
dz'_-,-': i
T ZE
dfty wxz
=|-___dx
IH—T 2Bl
d :_wﬁ
dx EEI
dr.f
d+ Ad
JE =2 wce] A
4
W
= + A%+
Y=gy TANE

Boundary conditions relevant to the problem are as follows:
1.Atx=L;y=0
2. Atx=L;dy/dx=0

The second boundary conditions yields

3

W
A=+
BEI
whereasthe first boundary conditions yields
_ wl? wl?
24El BEI
ot
BEI
T owee®  wlx wl?
Th =—|- + -
CTEl I TR

S0 Ymaem willbe at % =0

:_wﬁ
¥rmaxm ﬁ

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a

simply supported beam is subjected to a uniformly distributed load whose rate of

intensity varies as w / length.
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-~ wlength

]%
3

¥

7

A,

==

M
[

In order to write down the expression for bending moment consider any cross-
section at distance of x metre from left end support.

X

|
5 F :w[i]-w.}{

i

el i
2 2
The differential equation which gives the elastic curve for the deflected beam is
d'y _M_ 1 [wl.x_ﬂ]

& El EILZ2 2
dy _ [ wlx W
=] Zdu- [ dx+ A
dx I2E| * '[EEI §
z 3
Swhe _w
4El  BEI
Integrating,once maore one gets
wlhe'  wer?
Vi AR ()

Boundary conditions which are relevant in this case are that the deflection at each
support must be zero.

ie.atx=0;y=0:atx=1y=0

let us apply these two boundary conditions on equation (1) because the boundary

conditions are on y, This yields B = 0.
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_ witwl®
12El 24El
wl
24El

Sothe equationwhich gives the deflection curve is
1 IWL}{3 wirt wl® }{I

=1

Futher
In this case the maximum deflection will occur at the centre of the beam where x =
L/2 [ i.e. at the position where the load is being applied ].So if we substitute the value
of x=1L/2

o il

St
34 El

¥ o om -

max

Conclusions

(i) The value of the slope at the position where the deflection is maximum would be
zero.

(i) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

_1 wlx®  wt wl¥x
Bl 12 24 24
By successive differentiation one can find the relations for slope, bending moment,

shear force and rate of loading.

Deflection (y)

o

yEl = IWLH3 _wt ol }{I -5WLY

12 24 24

Slope (dy/dx) /—‘ *:i“

El.ﬂ _ ISWL}F e ngl wi!
dx 12 24 24 24
3" degree Polynomial
Bending Moment So the bending moment diagram would

105



IWL}{ ) Wt be

—— -
? 2
Zingle degres shear force

equation In '«

Shear Force

Shear force is obtained by
taking

third derivative.

Rate of intensity of
loading

|:|43,f:_

ETSd

El W

Case 4: The direct integration method may become more involved if the expression
for entire beam is not valid for the entire beam.Let us consider a deflection of a
simply supported beam which is subjected to a concentrated load W acting at a
distance 'a’ from the left end.

W
A lE‘ c
. A b -
> - :
Let R1 & R2 be the reactions then,
W
A lﬂ' c
Eo
R4 Rz
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B.Mfor the portion AB
Mg =Fix D<xca
B.Mfor the partionBC
My =Rpx-Wix-a)axgl

so0 the differential equation for the two cases would be,

2
EI§?=R1}{
di
EIﬁ=R,x-W(x-a)

These two equations can be integrated in the usual way to find ‘y' but this will result
in four constants of integration two for each equation. To evaluate the four constants
of integration, four independent boundary conditions will be needed since the
deflection of each support must be zero, hence the boundary conditions (a) and (b)
can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same
slope and deflection at the point of application of load i.e. at x = a. Therefore four
conditions required to evaluate these constants may be defined as follows:

(@) atx=0;y=0inthe portion ABi.e.0<x<a

(b) atx=1;y=0in the portion BCi.e.a<x<|

(c) at x = a; dy/dx, the slope is same for both portion

(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R1 is obtained as

H1:Wl:u
a+b
Hence,
Py _ Wb
= 4 LA = T
EIEE_ m}{ O<x<a (n
dly _ Wh
R — - - T A
Eld}{2 (a+h)}{ W - a) asxil ()
integrating (1) and (2] we get,
dy _ Wh s
= IR -
d 2a+py . )
2
dy _ Wb o Wix-a)
= k A A R 4
dx  2{a+b) 2 2 82K @

Using condition (c) in equation (3) and (4) shows that these constants should be
equal, hence letting
Ki=Kz=K
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Hence
|ﬂ = Wb 4

— Oixia------ 3
dx Z(a+b] ke )
;
dy _ Wb, W[x-a)
El—== - +hk ARTIEA) (R 4
dx 2(a+b) 7 R @
Integrating agian egquation (3)and (4)we get
= 3 T P
Ely E(a+hj}{ +hx + ks Dixia (3]
3
Ely = Wb }{3_W(K a) +hix+hy atxdl------ (B)
B(a+h) B
Ltilizing condition (a) in eguation (5] yields
k, =0

Ltilizing condition (b)) in eguation (B) yields

wh o W(-a)
0= I* - +kl +k
Bla+D) B *
Wb |3+W':|'ajg
B(a+b) B
Buta+h=I,
Thus,

ky=- ki

Wb +Hh)? | i
B B

Now lastly ks is found out using condition (d) in equation (5) and equation (6), the
condition (d) is that,
At x = a; y; the deflection is the same for both portion

k4=_ _k(a‘l'h:]
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Therefore y|, equation ¥ o equation 6

ar
Wb 5 ke, =B }{S—W[H_af +ht +k
E(a+b) *Bla+h) B *
3
Wb 4 Wb . W(la-a)
— _a" +ka+k, = - +ha +hk
Bla+b) . ST E[aen) 3 AT
Thus, k, =0,
OR
2 2
k4:_Wh(a+h) #b -k(a+bi=0
] B
Wb (a +b)" vk
kia+h)=- +
(a+b) 3 5
kz_Wh[a+h)+ Wyl
B B(a+h)
so the deflection equations for each portion of the beam are
Who o4
Ely= ® ok +k
T PPy 3
W' Whia+b)x Wbk
= - + --for0<x<a----- 7
573 +5) 5 57a +b) orf<xsa-----(7)

and for other portion

3
Wb ] W[}{-a)
- +hitk
Blath) " 3 ke
Substituting thevalue of 'k'inthe above equation

Wi Wix-al  Whia+hlx oyt
Elv = - - + Forforasx <l
T EE T ©E 3 Bla+p) o rAsE
so either of the equation (7 ar(8) may be usedta find the deflection at x=a

hence substituting x = ain either of the equation we get

Ely=

v =- Wiath?”
2 3EIfa+b)
ORfa=b=12
__wiE
max™ A

ALTERNATE METHOD: There is also an alternative way to attempt this problem in

a more simpler way. Let us considering the origin at the point of application of the

load,
ilex) X W
2 o *
L
| = e
% . 2
X
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Wyl
EE.MLC.c = T[i— }{]

substituting the value of Min the governing equation for the deflection

Wil
d'y _ 212
I El
7
d_j.r:1_ Wls Wi LA
u ] 4 4
2 2
o= 1wt Wl e
El i 12

Boundary conditions relevant for this case are as follows

(i) at x = 0; dy/dx= 0
hence, A=0

(i) at x = 1/2; y = 0 (because now | / 2 is on the left end or right end support since we

have taken the origin at the centre)

Thus,
Wit ow®
0= e Y =
Iaz 05 I
__wLe
48

Hence he equation which governsthe deflectionwouldbe
_ 1w we®owl®
=1

12 43
Hence
_owl?
ana:.:m |at}<=|:| __@ -ﬂﬂtthecentre
dy Lo W
1. Sr—— At th d
[d}{]max“‘ etz T EIEE eends

Hence the integration method may be bit cumbersome in some of the case. Another

limitation of the method would be that if the beam is of non uniform cross section,

.

1

i.e. it is having different cross-section then this method also fails.

So there are other methods by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending

moment for different sections.
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2. Area moment methods

MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of
deflection of beams subjected to bending. The method is based on a geometrical
interpretation of definite integrals. This is applied to cases where the equation for
bending moment to be written is cumbersome and the loading is relatively simple.

Let us recall the figure, which we referred while deriving the differential equation
governing the beams.

A — y — B

It may be noted that d< is an angle subtended by an arc element ds and M is the
bending moment to which this element is subjected.

We can assume,

ds = dx [since the curvature is small]

hence, Rd< =ds

48 _ 1 _M
ds R El
df _ M
ds El

But far small curvature[but Bisthe angle slope is tanB =gy for small

dx
7
anglestanB = B hence § 2 d—yau e getd—Elr = Ehy putting ds = dx]
dx dx* El
Hernce,
dg M [, Mdx
E—Eﬂr.dﬁl——El |:1:|
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The relationship as described in equation (1) can be given a very simple graphical
interpretation with reference to the elastic plane of the beam and its bending moment

diagram

Desfipoiion curs
.1 end of small element ds.

Defection curve of i

—
the: beam ’)_( ) Arc = Angle x radius
Pl =] we can take the radius
ey . 1o hie el 1o

This lsalsan within
Al r reasonabbe acouracy,

A B '.-:wl:n;'w
,,T tangents drawn at the
/

Bending Moment diagram
af the beam subjected o —s| M o C
arbitrary type of loading

Ay

_-— T —— Bi
centroid

Refer to the figure shown above consider AB to be any portion of the elastic line of
the loaded beam and AiBuis its corresponding bending moment diagram.
Let AO = Tangent drawn at A

BO = Tangent drawn at B
Tangents at A and B intersects at the point O.
Futher, AA ' is the deflection of A away from the tangent at B while the vertical
distance B'B is the deflection of point B away from the tangent at A. All these
guantities are futher understood to be very small.

Let ds = dx be any element of the elastic line at a distance x from B and an

angle between at its tangents be d<. Then, as derived earlier

bl ol
df=—
El

This relationship may be interpreted as that this angle is nothing but the area M.dx of
the shaded bending moment diagram divided by EI.
From the above relationship the total angle < between the tangents A and B may be

determined as
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Since this integral represents the total area of the bending moment diagram, hence
we may conclude this result in the following theorem
Theorem I:

{ slope orf . } _ ‘%xarea of B.M diagrambetween

between any two points corresponding portion of B.Mdiagram

Now let us consider the deflection of point B relative to tangent at A, this is

nothing but the vertical distance BB'. It may be note from the bending diagram that
bending of the element ds contributes to this deflection by an amount equal to x
d<< [each of this intercept may be considered as the arc of a circle of radius x

subtended by the angle <]

B
a=jxda
Hence the total distance B'B becomes  #

The limits from A to B have been taken because A and B are the two points on the
elastic curve, under consideration]. Let us substitute the value of d< = M dx / El as

derived earlier
A A [ This is infact the moment of area of the bending moment
diagram]

Since M dx is the area of the shaded strip of the bending moment diagram
and x is its distance from B, we therefore conclude that right hand side of the above
equation represents first moment area with respect to B of the total bending moment
area between A and B divided by EI.

Therefore,we are in a position to state the above conclusion in the form of theorem
as follows:

Theorem lI:

1 x{ﬁrst maoment of area with respect }

Deflection of point ‘B' relative to point A El | topointB, of the total B.M diagram

Futher, the first moment of area, according to the definition of centroid may be

written as A, where * is equal to distance of centroid and a is the total area of

bending moment

8= | AR

m ~

Thus,
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Therefore,the first moment of area may be obtained simply as a product of the total
area of the B.M diagram betweenthe points A and B multiplied by the distance * to
its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the

loaded beam between the points A and B, as shown below,

Ay By

Then, adequate precaution must be exercised in using the above theorem. In such a
case B. M diagram gets divide into two portions +ve and —ve portions with centroids

Ciand C2. Then to find an angle < between the tangentsat the points A and B

o= Jde Md}{

And 5|m|larlj,f for the deflection of B away fromthetangent at Abecomes

u]
= JM dx JMd }{.}{
. El
lllustrative Examples: Let us study few illustrative examples, pertaining to the use
of these theorems
Example 1:
1. A cantilever is subjected to a concentrated load at the free end.It is required to find
out the deflection at the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below
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:I‘_
FFTFrRT.
m

N"NL B.M. Dlagram

Let us workout this problem from the zero slope condition and apply the first area -

moment theorem

slope at #—R=%[ﬂnrea of B.M diagram between the points A and B]

TN
_E[EL'WL]

_ WL
2El

The deflection at A (relative to B) may be obtained by applying the second area -
moment theorem

NOTE: In this case the point B is at zero slope.

Thus,

& =é[ﬁrs¢ moment of area of B.Mdiagram between A andBabout A

- 547)
= % [%L.WL];L]

_ L
3El

Example 2: Simply supported beam is subjected to a concentrated load at the mid
span determine the value of deflection.
A simply supported beam is subjected to a concentrated load W at point C. The

bending moment diagram is drawn below the loaded beam.
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B.M digram.

Again working relative to the zero slope at the centre C.

[Area of B.M diagram between A and C]

_HIETY LY vl _
_E[[E][ﬁ][T]] we are takinghalf area of the B.Mbecause we

m| —

slope at A=

hawe towork out thisrelative to a zero slope

_ Wi
16EI
Deflection of A relative to © = central deflection of C

ar

o= %[Mume nt of B.M diagram between points A and C about Al

el

_wl?
4BEl

Example 3: A simply supported beam is subjected to a uniformly distributed load,
with a intensity of loading W / length. It is required to determine the deflection.

The bending moment diagram is drawn, below the loaded beam, the value of

maximum B.M is equal to WI?/ 8
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/ Y4 length
Cﬁmﬁw'

& 2,

L

Wi
\ /2\
A B ’
C 5.F.Diagram
il
"

W
v

B.M. Diagram

Li2

-

o DIB{LIE

So by area moment method,

| —

[Area of B.Mdiagram between point A and C]

e
Deflection at paint C =_[AT]

w5

El
WL

Slope at point Cwert point A =

m

_

El

relativeto A

Macaulay's Methods

If the loading conditions change along the span of beam, there is
corresponding change in moment equation. This requires that a separate moment
equation be written between each change of load point and that two integration be
made for each such moment equation. Evaluation of the constants introduced by
each integration can become very involved. Fortunately, these complications can be
avoided by writing single moment equation in such a way that it becomes continuous

for entire length of the beam in spite of the discontinuity of loading.
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Note : In Macaulay's method some author's take the help of unit function
approximation (i.e. Laplace transform) in order to illustrate this method, however
both are essentially the same.

For example consider the beam shown in fig below:

Let us write the general moment equation using the definition M = ( > M )., Which
means that we consider the effects of loads lying on the left of an exploratory

section. The moment equations for the portions AB,BC and CD are written as follows

%
Em N ! 4'3!:' i

A E‘l “ wlyy v g0
B 2m J Im | 2m S
Ry = 480 N A Fo = 970N Wy = [480 x-500(x-2)|M.m
. | x Mep = [danx—EDD(x—zj-%[x—Bf]N.m

It may be observed that the equation for Mcp will also be valid for both Mas and
Mgc provided that the terms ( x - 2 ) and ( x - 3 )?are neglected for values of x less
than 2 m and 3 m, respectively. In other words, the terms (x -2 ) and ( x - 3)? are

nonexistent for values of x for which the terms in parentheses are negative.

¥
’ 500 M 450 Nim
A B Cl Yy i ¥y yD
A -— X
_ 2m JdooIm Zm
Ri=480MN Ra=920N

As an clear indication of these restrictions,one may use a nomenclature in which the
usual form of parentheses is replaced by pointed brackets, namely, < ». With this

change in nomenclature, we obtain a single moment equation

I = [dBD}{—EDD[}{—Ej - ?[}{ —3)2]N.m
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Which is valid for the entire beam if we postulate that the terms between the pointed
brackets do not exists for negative values; otherwise the term is to be treated like
any ordinary expression.

As an another example, consider the beam as shown in the fig below. Here the
distributed load extends only over the segment BC. We can create continuity,
however, by assuming that the distributed load extends beyond C and adding an
equal upward-distributed load to cancel its effect beyond C, as shown in the adjacent
fig below. The general moment equation, written for the last segment DE in the

new nomenclature may be written as:

Ry =500 N R:=1300MN

AL M

s ol
I

— 3
P
=

Ry =300M
Rz=1200N

M:[Ennx—@(x—wz » 400
2 2

(x-4) +13DD(H—E)]N.m

It may be noted that in this equation effect of load 600 N won't appear since it is just
at the last end of the beam so if we assume the exploratary just at section at just the
point of application of 600 N than x = 0 or else we will here take the X - section
beyond 600 N which is invalid.

Procedure to solve the problems

(). After writing down the moment equation which is valid for all values of X' i.e.
containing pointed brackets, integrate the moment equation like an ordinary
equation.

(il). While applying the B.C's keep in mind the necessary changes to be made
regarding the pointed brackets.

llustrative Examples :
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1. A concentrated load of 300 N is applied to the simply supported beam as shown in
Fig.Determine the equations of the elastic curve between each change of load point

and the maximum deflection in the beam.

I-'Il

Ry =100MN Re:=200N

Solution : writing the general moment equation for the last portion BC of the loaded
beam,
di
Eld—§=M=|:1DD}{—3EIEI{}{—2}:|N.m g )
X
Integrating twice the above eguation to obtain slope and the deflection

dy _ 2
Bl = (5067 1804 -2) + 0 JNm? 2)
_fal s 3 3
Ely = ?x -0k -2 + Cpor Gy Mm® L (3)

To evaluate the two constants of integration. Let us apply the following
boundary conditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these
values in Eq. (3) we find C2 = 0.keep in mind that< x -2 >3 is to be neglected for
negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.
substituting these values in the deflection Eq. (3), we obtain

0 :[%33 -50(3 -2y +3.c,]ur Cy=-133M.m’

Having determined the constants of integration, let us make use of Egs. (2)
and (3) to rewrite the slope and deflection equations in the conventional form for the

two portions.
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segment AB (0 £ = £2m)
dy _

2
Bl (5Dx ~133]Nm )
Ely = [53':' v 133}{]N ....... &)
segment BC (2m £ % £ 3m)
dr.f

Bl = (505" - 150 {x -2)' - 133x N’ ....(6)

Ely = [@}{3—50 (x-2)° —133}{]N.m3.......(?j

Continuing the solution, we assume that the maximum deflection will occur in the
segment AB. Its location may be found by differentiating Eq. (5) with respect to x and
setting the derivative to be equal to zero, or, what amounts to the same thing, setting
the slope equation (4) equal to zero and solving for the point of zero slope.
We obtain
50 x>~ 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the
equation does not yield a value < 2 m then we have to try the other equations which
are valid for segment BC)
Since this value of x is valid for segment AB, our assumption that the maximum
deflection occurs in this region is correct. Hence, to determine the maximum
deflection, we substitute x = 1.63 m in Eq (5), which yields

Ely [pgem = -145Hm*  __(8)

The negative value obtained indicates that the deflection y is downward from the x
axis.quite usually only the magnitude of the deflection, without regard to sign, is
desired; this is denoted by <, the use of y may be reserved to indicate a directed
value of deflection.
ifE=30Gpaand1=19x10°mm*=1.9x 10 ®*m*, Eq. (h) becomes
¥ |maem = [30%10°%)[1.9%10°7)
Then = =Z2Admm

Example 2:
It is required to determine the value of Ely at the position midway between the

supports and at the overhanging end for the beam shown in figure below.
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im am 2m 2m
—— -
400 Wim
A EIII I I I 11 1 1!3 ] E
A= _ =R == X
Rq= 600 M Rz=1300MN

Solution:
Writing down the moment equation which is valid for the entire span of the beam

and applying the differential equation of the elastic curve, and integrating it twice, we

obtain
E18Y = = (oo - 402 (-2 + 200 - y? w1300 (- 89 i
dx 2 2
SLA DY EDD(H 17 + EDD(H—4)3+EED(}{—5)2+C1 M
dx 3 3
{250 4 50 4 50 4+ EB50 3
Ely —{T}{g—?[x—ﬂ +?[}{ 47 + (x-6) +(31}{+I:32]P-J.rn3

To determine the value of Cz, It may be noted that Ely = 0 at x = 0,which
gives C2 = 0.Note that the negative terms in the pointed brackets are to be ignored
Next,let us use the condition that Ely = O at the right support where x = 6m.This
gives

0= @(5)3 _s80
3 3

&0

E)* + ()% +6Cy or C; = -1308N

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m
in the deflection equation for the segment BC obtained by ignoring negative values

of the bracketed terms < x - 4 <4and < x - 6 <3, We obtain

-@(3) _(2) ~1308(3) = -1941 N.m®

For the overhanging end where »=8 m we have
_1280,,.2 50 5.4 50,,.4 BA0,-.z
Ely = [T[Bj ST ) =) —1308(8)]
= -18 14N m?
Example 3:
A simply supported beam carries the triangularly distributed load as shown in figure.

Determine the deflection equation and the value of the maximum deflection.
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Solution:

Due to symmetry, the reactionsis one half the total load of 1/2wolL, or R1 = Rz =
1/4woL.Due to the advantage of symmetry to the deflection curve from A to B is the
mirror image of that from C to B. The condition of zero deflection at A and of zero
slope at B do not require the use of a general moment equation. Only the moment
equation for segment AB is needed, and this may be easily written with the aid of
figure(b).

Taking into account the differential equation of the elastic curve for the segment AB

and integrating twice, one can obtain

oy wol  owpxt x

El— =i, =2 _%- = 1

dd P L 3 0
dy wolx®  wgu?

El— - - C S
dx g 1oL ! 2

wo L w

El =0 Rl LAY o S

! 24 sOL 7T =)

In order to evaluate the constants of integration,let us apply the B.C'swe note that at
the support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of
symmetry, the slope dy/dx = 0 at midspan where x = L/2.Substituting these

conditions in equation (2) we get

2 4
D:W_DL E —W_D E +I:1|:1 :—EII'III'IIDL3
g 12 12002 192

Hence the deflection equation from A to B (and also from C to B because of

symmetry) becomes
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Ely = gl B g _ Sl
24 0L 192
Whichreducesto

Wp X (2501 - 40U + 1B
o

Ely = -
The maximum deflection at midspan,where x = L& isthen found to be

_ gLt
120

Ely =

Example 4: couple acting
Consider a simply supported beam which is subjected to a couple M at adistance 'a’

from the left end. It is required to determine using the Macauley's method.

lﬁ: =M
,Jd L

i 3 e
a -
Ri=Mg L
T T -l

To deal with couples, only thing to remember is that within the pointed
brackets we have to take some quantity and this should be raised to the power
zero.i.e. M<< x - a < 9. We have taken the power 0O (zero) ' because ultimately the
term M<< x - a < %Should have the moment units.Thus with integration the

guantity<< x - a < becomes either < x - a <lor<< x-a<?

Or
a-M
Al (] | B
AN +
L & Sl b 3t
L

M
W

Therefore, writing the general moment equation we get

iy
M=Ryx-M{x-a}or Eld—2=M
¥
Integrating twice we get
dy e 1
BElI-L =R, —-M{x-a% +C
R R { } 1

}{3

Ely = RT?—g{x —al + Cpx+ G
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Example 5:

A simply supported beam is subjected to U.d.| in combination with couple M. It is
required to determine the deflection.

200M/m
M=1800 M-m
&~ FYYYYYY Y YY
I o
Rloom | 2m  2m  om

This problem may be attemped in the some way. The general moment equation my
be written as

(] =R1x—1ann{x-z>ﬂ_EDD{““i}{H-fi}

2 +R2{}{_E>
2
=H1x—1EiEIIII{x—2}D—M+HE{K—E}
Thus,
a2y o 200 -4

Integrate twice to get the deflection of the loaded beam.
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Module 4
Lecture 1- 4: Closed Coiled helical Spring

Closed Coiled helical springs subjected to axial loads:
Definition: A spring may be defined as an elastic member whose primary function is

to deflect or distort under the action of applied load; it recovers its original shape
when load is released.

or

Springs are energy absorbing units whose function is to store energy and to restore
it slowly or rapidly depending on the particular application.

Important types of springs are:

There are various types of springs such as

(i) helical spring: They are made of wire coiled into a helical form, the load being
applied along the axis of the helix. In these type of springs the major stresses is
torsional shear stress due to twisting. They are both used in tension and

compression.

(if) Spiral springs: They are made of flat strip of metal wound in the form of spiral
and loaded in torsion.

In this the major stresses are tensile and compression due to bending.
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(iv) Leaf springs: They are composed of flat bars of varying lengths clamped
together so as to obtain greater efficiency . Leaf springs may be full elliptic, semi
elliptic or cantilever types, In these type of springs the major stresses which come

into picture are tensile & compressive.

These type of springs are used in the automobile suspension system.

Uses of springs :

(a) To apply forces and to control motions as in brakes and clutches.

(b) To measure forces as in spring balance.

(c) To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs.

(e) To change the vibrating characteristics of a member as inflexible mounting of
motors.

Derivation of the Formula :

In order to derive a necessary formula which governs the behaviour of springs,

consider a closed coiled spring subjected to an axial load W.
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L 2

Let

W = axial load

D = mean coil diameter

d = diameter of spring wire

n = number of active coils

C = spring index = D / d For circular wires

| = length of spring wire

G = modulus of rigidity

x = deflection of spring

g = Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be
twisted like a shaft.

If q is the total angle of twist along the wire and x is the deflection of spring under the
action of load W along the axis of the coil, so that

x=D/2.<

again | = < D n [ consider ,one half turn of a close coiled helical spring ]

i
’.i'

s

Assumptions: (1) The Bending & shear effects may be neglected
(2) For the purpose of derivation of formula, the helix angle is considered to

be so small that it may be neglected.
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Any one coil of a such a spring will be assumed to lie in a plane which is nearly < " to
the axis of the spring. This requires that adjoining coils be close together. With this
limitation, a section taken perpendicular to the axis the spring rod becomes nearly
vertical. Hence to maintain equilibrium of a segment of the spring, only a shearing
force V = F and Torque T = F. r are required at any X — section. In the analysis of
springs it is customary to assume that the shearing stresses caused by the direct
shear force is uniformly distributed and is negligible

so applying the torsion formula.

Using the torsion formula i.e

T.7.64
J oo [
4
and substitituting J = E;T = W.E
32 2
2%
#=—:1=nrD.
o i
SPRING DEFLECTION
wed f2 - G2 /D
i ? al.n
3z
Thus,
- Bw D n
G.d*

Spring striffness: The stiffness is defined as the load per unit deflection therefore

W
e BwD? n
Gd*
Therefare
Gt
" 8D%n

Shear stress

k =

wdi2 _ Tpn

Tt di2
32
_ BwD
or Tmax"" - ?'.!'dg

WAHL'S FACTOR :
In order to take into account the effect of direct shear and change in coil curvature a

stress factor is defined, which is known as Wabhl's factor
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= dc-1 0815
K = Wahl' s factor and is defined as de-4 ¢

Where C = spring index
=D/d
if we take into account the Wabhl's factor than the formula for the shear stress

_1BTk
becomes ™ = =’

Strain Energy : The strain energy is defined as the energy which is stored within a
material when the work has been done on the material.
In the case of a spring the strain energy would be due to bending and the strain
energy due to bending is given by the expansion

T

=)
L=mln

I'?d4

B4
soafter substitutionwe get

2
U = 32T7Dn
Ed*
Example: A close coiled helical spring is to carry a load of 5000N with a deflection of

50 mm and a maximum shearing stress of 400 N/mm? .if the number of active turns
or active coils is 8.Estimate the following:

() wire diameter

(i) mean coil diameter

(iii) weight of the spring.

Assume G = 83,000 N/mm? ; < = 7700 kg/m?3

solution :

(i) for wire diametre if W is the axial load, then

w2 _ Trgen
ad* d/2
32

400 md* 2
S 4232w
_A00.md* 2
~ B000.16

D =00314d

Futher, deflection is given as
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_BwD®n
G.d*
on substituting the relewant parameterswe get

343
50 = §.5000.00.0314d°)° .8

83,0004
d=13.32mm
Therefore,
D =.0314 x (13.317)3mm
=74.15mm
D=74.15mm
Weight

massorweight = volume. density

= area.length of the spring. density of spring material
2

ud
=™ on.
g e

On substituting the relevant parameters we get
Waight = 1.9596 ky
=2.0ky

Close —coiled helical spring subjected to axial torque T or axial couple.

R

~
Ed

CTD

In this case the material of the spring is subjected to pure bending which tends to
reduce Radius R of the caoils. In this case the bending moment is constant through

out the spring and is equal to the applied axial Torque T. The stresses i.e. maximum

bending stress may thus be determined from the bending theory. "
Deflection or wind —up angle:
Under the action of an axial torque the deflection of the spring becomes the “wind —

up” angle of the spring which is the angle through which one end turns relative to the

131



other. This will be equal to the total change of slope along the wire, according to area
— moment theorem

L
hdL
f=|— butt=T
£ B
L L
- TﬂL:_I 4L
n EI Elj
Thus, as'T 'remainsconstant
p= It
El
Futher
L =aln
::'?d4
[= —
G4
Therefare, on substitution the value of & obtained is
_B4AT D
#= 4
Ed

Springs in Series: If two springs of different stiffness are joined endon and carry a
common load W, they are said to be connected in series and the combined stiffness
and deflection are given by the following equation.

W WY

— T Mt Ey T —+—

k ki ks

ar k
1 1 1

_ —t —

k k1 kz W

Springs in parallel: If the two spring are joined in such a way that they have a
common deflection X' ; then they are said to be connected in parallel.In this care the
load carried is shared between the two springs and total load W = W1 + W2

LU 1
kK kK

Futher
W= N

oW
.
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Module 4:
Lecture 5-8: Buckling of Columns
Introduction:
Structural members which carry compressive loads may be divided into two broad
categories depending on their relative lengths and cross-sectional dimensions.
Columns:
Short, thick members are generally termed columns and these usually fail by
crushing when the yield stress of the material in compression is exceeded.
Struts:
Long, slender columns are generally termed as struts, they fail by buckling some
time before the yield stress in compression is reached. The buckling occurs owing to
one the following reasons.
(a). the strut may not be perfectly straight initially.
(b). the load may not be applied exactly along the axis of the Strut.
(c). one part of the material may yield in compression more readily than others owing
to some lack of uniformity in the material properties through out the strut.
In all the problems considered so far we have assumed that the deformation to be
both progressive with increasing load and simple in form i.e. we assumed that a
member in simple tension or compression becomes progressively longer or shorter
but remains straight. Under some circumstances however, our assumptions of
progressive and simple deformation may no longer hold good and the member
become unstable. The term strut and column are widely used, often interchangeably
in the context of buckling of slender members.]
At values of load below the buckling load a strut will be in stable equilibrium where
the displacement caused by any lateral disturbance will be totally recovered when
the disturbance is removed. At the buckling load the strut is said to be in a state of
neutral equilibrium, and theoretically it should than be possible to gently deflect the
strut into a simple sine wave provided that the amplitude of wave is kept small.
Theoretically, it is possible for struts to achieve a condition of unstable equilibrium
with loads exceeding the buckling load, any slight lateral disturbance then causing
failure by buckling, this condition is never achieved in practice under static load
conditions. Buckling occurs immediately at the point where the buckling load is
reached, owing to the reasons stated earlier.
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The resistance of any member to bending is determined by its flexural rigidity El and
is The quantity | may be written as | = Ak?,

Where | = area of moment of inertia

A = area of the cross-section

k = radius of gyration.

The load per unit area which the member can withstand is therefore related to k.
There will be two principal moments of inertia, if the least of these is taken then the
ratio

[ length of member

k" least radios of gyration

Is called the slenderness ratio. It's numerical value indicates whether the member
falls into the class of columns or struts.

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory.
In the following sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P'
this load ‘P' produces a deflection ‘y' at a distance ‘x' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment at

either end.

Assumption:
The strut is assumed to be initially straight, the end load being applied axially

through centroid.

. —>

+ B.M

x ‘
:: - B.M :

According o sign
convention
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B. M), = -Py

Futherwe know that

In this equation ‘M' is not a function ‘x'. Therefore this equation can not be integrated

directly as has been done in the case of deflection of beams by integration method.

Thus,
diy

E |
dx?

+Py=10

Though this equation is in ‘y' but we can't say at this stage where the deflection

would be maximum or minimum.

So the above differential equation can be arranged in the following
d'y | Py |

form d¥*  El

Let us define a operator

D = d/dx

(D? + n?) y =0 where n? = P/EI

This is a second order differential equation which has a solution of the form

consisting of complimentary function and particular integral but for the time being we
are interested in the complementary solution only[in this P.I = 0; since the R.H.S of
Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx)

Where A and B are some constants.

y=ACDSJEH + Elain,JEx
Therefore El El

In order to evaluate the constants A and B let us apply the boundary conditions,
(latx=0;y=0

(ilatx=L;y=0

Applying the first boundary condition yields A = 0.

Applying the second boundary condition gives
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Bsin L1||E =0
El
. . |'F'
ThusenherEi:D,nrsm[L E]:III

if B=0that y0 for all values of x hence the strut has not buckled yet Therefore the solution required is

) P 1. IIF' _ _
sm[L E]_D nr[L E] mornlL ol
[P _ = _ 7°El
or |— = = or P=—

El L L4

From the above relationship the least value of P which will cause the strut to buckle,

and it is called the “ Euler Crippling Load ” Pefrom which w obtain.

P - sz|
L

It may be noted thatthe value of [ used in this expression is the least moment of inertia

It should be noted that the other solutions exists for the equation

Sin IJE =0 i.e. sin nL=0
El

The interpretation of the above analysis is that for all the values of the load P, other

than those which make sin nL = 0; the strut will remain perfectly straight since

y=BsinnL=0
For the particular value of
PE = @

LE

sinnL =0 ornL=x

Therefare n =2
L
Hence y= B sin nx =8 sin ?

Then we say that the strut is in a state of neutral equilibrium, and theoretically any
deflection which it suffers will be maintained. This is subjected to the limitation that ‘L'
remains sensibly constant and in practice slight increase in load at the critical value
will cause the deflection to increase appreciably until the material fails by yielding.
Further it should be noted that the deflection is not proportional to load, and this
applies to all strut problems; like wise it will be found that the maximum stress is not
proportional to load.

The solution chosen of nL = < is just one particular solution; the solutions nL= 2<,

3<, 5< etc are equally valid mathematically and they do, infact, produce values of
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‘Pe' which are equally valid for modes of buckling of strut different from that of a
simple bow. Theoretically therefore, there are an infinite number of values of Pe ,
each corresponding with a different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest
critical load producing the single bow buckling condition.

The solution nL = 2< produces buckling in two half — waves, 3< in three half-waves

etc.

1]
Le]
T

Py = gt El =
1= E/L‘ Fa=d P Py

P

] .>
P P2 A py

nk=x nL =2z nL = 3s
Fundamental Mode Second harrnon s Third harmaonic
(First harmonic) {(mid point Bracing) {Third point bracing)
P 7El
L= =@ or By = —
El 12

sl

L JP = omor p, = 47E L up.
El E
(P 97 El

It L Bl = dmor B = E = 9P,

If load is applied sufficiently quickly to the strut, then it is possible to pass through the

fundamental mode and to achieve at least one of the other modes which are
theoretically possible. In practical loading situations, however, this is rarely achieved
since the high stress associated with the first critical condition generally ensures
immediate collapse.

struts_and columns with other end conditions: Let us consider the struts and

columns having different end conditions

Case b: One end fixed and the other free:
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P b Ongin

—
]
FEITRITTTS

writing down the value of bending moment at the point C

B.M| = Pla-y)
Hence, the differential equation becomes,
dz'_-,-'
El — = Fla -
o ( ¥)

Cin rearranging we get
dy , Py _ Pa

dxf  El El
P_ .2
Let — =
e E| n

Hence in operator form, the differential equation reduces to ( D? + n?) y = n%a
The solution of the above equation would consist of complementary solution and
particular solution, therefore

Ygen = A cos(nx) + sin(nx) + P. |

where

P.I = the P.l is a particular value of y which satisfies the differential equation
Hence yr1 = a

Therefore the complete solution becomes

Y = A cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B
(atx=0;y=0

This yields A = -a

(i)atx=0; dy/dx =0

This yields B =0

Hence

y =<acos(nhx) +a

Futher,atx=L;y=a

Thereforea=-acos(nx) +a or 0 =cos(nL)

Now the fundamental mode of buckling in this case would be
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nL =

EL:
El

T El
po=t=
Byt

m
2
m
2

Therefore the Euler's crippling load is given as

Case 3

Strut with fixed ends:

i

%p

Due to the fixed end supports bending moment would also appears at the supports,

e
T

9

o

]
X

—

/N

iy

|

L

since this is the property of the support.
Bending Moment at point C=M - P.y
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Bl = M-Py
&y P oM
dxf El El

ne = %,Thereﬁ:re in the operator fram, the eguation reducesto

2,2y, o M
(0% +n )Y‘g
'.'l"geneml = '.'I"c-:-mplememar!.r t '.'I"parti-::.llarirrtegml
_ oMM
TR T

Hence the general solution would be
y = B Cosnx + A Sinnx +g

Boundry conditions relevant to this case are at x=0:y=0
Pl

B =- —
FI

Also at x = I:I;d—Elf =0 hence
o

A=
Therefare,
y= - g Cos nx +g
kA
=— [1- Cosnx
yes )

Futher,tmaybenotedthatat x =L;y =0
ThenO = g (1- Cosnl)

Thus,e'rtherg =D or{1- Cosnl)=0

obwiously,[1- Cosnl)=0
cognb =1

Herncethe least solutionwouldbe
nL =2m

\(g L =2m Thusthe buckling load or crippling load is

5 - a4 El
g T
Thus, L

Case 4

One end fixed, the other pinned
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— Py /K*’“““—» ,:Y\ i
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¥
ey

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is
necessary in this case to introduce a vertical load F at the pin. The moment of F
about the built in end then balances the fixing moment.

With the origin at the built in end, the B,M at C is given as

di
El— =-Py + F{L-%
" ¥+ FiL-%
2
EIEi
%
Hence
F

dy P

+—y = —(L-x

o' TEtt

In the operatar form the equation reduces to

(Dz +n2) V= %[L— )

¥ -
= +Py = F(L-%)

=L||:L— xjor y =

yaMmhr
P nE

(L-%)

Tl

Thefull solution is therefore
) F
= AC B= —fL-
y 0%y + |nm{+P[ %)

The boundry conditions relevantsto the problerm are at »=0;y=0

FL
Hence A = - —
ENCE B

Alsoat x =El;d—3'f= ]
dx

Hence B = r
nF
ar vy = —ECDS N + iSin M +E(L— )
F nkF

- Fra
y = ﬁ[Sm iy - nLCosnx + nfl- }{]]

Alsowhenx=L;y=0

Therefore

nL CosnL=SinnL ortannL=nL

The lowest value of nL ( neglecting zero) which satisfies this condition and which

therefore produces the fundamental buckling condition is nL = 4.49radian
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P

— L= 449
or E]
P

= =2
El

P - 2.05;-;2 El
L

Equivalent Strut Length:
Having derived the results for the buckling load of a strut with pinned ends the Euler

loads for other end conditions may all be written in the same form.
_ 7Bl

e F, = =

Where L is the equivalent length of the strut and can be related to the actual length
of the strut depending on the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in
each of the strut deflection curves shown. The buckling load for each end condition
shown is then readily obtained. The use of equivalent length is not restricted to the
Euler's theory and it will be used in other derivations later.

The critical load for columns with other end conditions can be expressed in terms of
the critical load for a hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points
of its unsupported length. Since the bending moment is zero at a point of inflection,
the freebody diagram would indicates that the middle half of the fixed ended is
equivalent to a hinged column having an effective length Le = L / 2.

The four different cases which we have considered so far are:

(a) Both ends pinned (c) One end fixed, other free

(b) Both ends fixed (d) One end fixed and other pinned

142



ia) (b]

Po= :-EL,E?
f_
(&) P d)
L= ZL
el

1 -
1 P. = n¥El

1] -

~ TEl

1 -‘1-LI:

Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight
and the end load being applied axially through centroid] reached. There is always
some eccentricity and initial curvature present. These factors needs to be
accommodated in the required formula's.

It is realized that, due to the above mentioned imperfections the strut will
suffer a deflection which increases with load and consequently a bending moment is
introduced which causes failure before the Euler's load is reached. Infact failure is by
stress rather than by buckling and the deviation from the Euler value is more marked
as the slenderness-ratio I/k is reduced. For values of I/k < 120 approx, the error in
applying the Euler theory is too great to allow of its use. The stress to cause buckling

from the Euler formula for the pin ended strut is
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Euler'sstress, o, = P_E = _
A AR
But, | = Ak’

_ ©E

A plot of <e versus | / k ratio is shown by the curve ABC.

Euler's curve
e

Far struetural stesl,
curees enlncide at ik = 80
curves coincide

ofF— c atlik = 120
2 / B
- _—
experimental
LIRS
L2]1] 100 150 1K
short  intermediate  —— kong column

Allowing for the imperfections of loading and strut, actual values at failure must lie
within and below line CBD.
Other formulae have therefore been derived to attempt to obtain closer agreement
between the actual failing load and the predicted value in this particular range of
slenderness ratio i.e.l/k=40 to I/k=100.
(a) Straight — line formulae :
The permissible load is given by the formulae
P=U¥A[1—n[;—]] _ N _

Where the value of index ‘n' depends on the material used and the
end conditions.

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as

f

(c) Rankine Gordon Formulae :
T 1 1

P, P, P

-] [=]

F=ah

where the value of index ‘b' depends on the end conditions.

Where Pe = Euler crippling load
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Pc = Crushing load or Yield point load in Compression

Pr = Actual load to cause failure or Rankine load

Since the Rankine formulae is a combination of the Euler and crushing load for a
strut.

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be
neglected.

Thus Pr = Pc, for very large struts, P e is very small so 1/ P e would be large and 1/
P ccan be neglected ,hence Pr = Pe

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to
be fairly accurate for the intermediate values in the range under consideration. Thus

rewriting the formula in terms of stresses, we have

1 1 1
- = +
e N
1 1 1
—_ = +
g g, 0,
12
g 0.0,
g 20y o Oy
g, + 0 U

For strutswithboth endspinned

_ #E
|:|'_

o)
a= L
Where 7El and the value of ‘a' is found by conducting experiments on various
materials. Theoretically, but having a value normally found by experiment for various

materials. This will take into account other types of end conditions.
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